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Abstract

We study a series of real nonassociative algebras Op,q introduced in [5]. These algebras
have a natural Zn

2 -grading, where n = p+ q, and they are characterized by a cubic form
over the field Z2. We establish all the possible isomorphisms between the algebras Op,q

preserving the structure of Zn
2 -graded algebra. The classification table of Op,q is quite

similar to that of the real Clifford algebras Clp,q, the main difference is that the algebras
On,0 and O0,n are exceptional.

1 Introduction

The series of noncommutative and nonassociative algebras, Op,q, over the field R of real
numbers, was introduced in [5]. The algebras Op,q generalize the classical Zn2 -graded algebras,
where Zn2 = Z/2Z × · · · × Z/2Z is the abelian group with n = p + q generators of order 2.
Noncommutativity and nonassociativity of the algebras are controlled by the grading, within
the framework developed in [2, 3]. The main feature of the algebras Op,q that distinguishes
them from the algebras considered in [2, 3] (for instance, from the Cayley-Dickson algebras)
is that they are characterized by a cubic form on the vector space Zn2 over the field Z2 of
two elements. The algebras Op,q have applications to the classical Hurwitz problem of sum of
square identities and related problems, see [4, 6].

The series of algebras Op,q can be compared to the series of Clifford algebras, Clp,q, as well
as to the Cayley-Dickson algebras, see the following diagram.
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The integer parameters p, q refer to the signature of the set of generators of the algebras.
The problem of classification of Op,q with respect to the signature (p, q) was formulated in [5].
In this paper, we answer this question.

The classification table of Clifford algebras has beautiful properties of symmetry and peri-
odicity. In this paper we establish quite similar properties for the algebras Op,q, with the only
difference: the algebras On,0 and O0,n are exceptional. Note that the Clifford algebras over R
are very well understood; every algebra Clp,q is isomorphic to a matrix algebra over R,C or H.
The structure of the algebras Op,q is more complicated and needs a further investigation.
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The paper is organized as follows. In Section 2, we provide three equivalent definitions of
the algebras Op,q and recall important notions related to them. In Section 3, our main result
is settled. We establish isomorphisms between the algebras of the series that preserve the
structure of Zn2 -graded algebra . We also present a table to illustrate the symmetry properties
and to give an overview of the situation comparable to the Clifford case.

2 The algebras Op,q generalizing the octonions

In this section, we recall the details about the algebras Op,q, see [5]. We give three equivalent
definitions of these algebras. The first definition describes Op,q as twisted group algebras
over Zn2 . The second definition uses generators and relations. The third way to describe Op,q

is to understand them as nonassociative deformations of Clifford algebras.

2.1 Twisted group algebras over Zn2 , the first definition of Op,q

We denote by Z2 the abelian group on two elements {0, 1}. Let f be any function from Zn2×Zn2
to Z2. The twisted group algebra A = (R [Zn2 ] , f) is defined as the real linear space over the
formal basis {ux, x ∈ Zn2} together with the product given by

ux · uy = (−1)f(x,y)ux+y, (2.1)

for all x, y ∈ Zn2 .

Example 2.1. (a) The algebra of quaternions H (' Cl0,2), and more generally every Clifford
algebra Clp,q, can be realized as twisted group algebras over Zn2 , [3]. Denote by x = (x1, . . . , xn)
and y = (y1, . . . , yn) the elements in Zn2 . The corresponding twisting function is bilinear:

fClp,q (x, y) =
∑

1≤i≤j≤n
xiyj +

∑
1≤i≤p

xiyi (n = p+ q). (2.2)

In particular, fH (x, y) = x1y1 + x1y2 + x2y2.
(b) The algebra of octonions O is a twisted group algebra over Z3

2 with the cubic twisting
function:

fO (x, y) = (x1x2y3 + x1y2x3 + y1x2x3) +
∑

1≤i≤j≤3

xiyj , (2.3)

see [2].

In general, a twisted group algebra is neither commutative nor associative. The defect of
commutativity and associativity is measured by a symmetric function β : Zn2 ×Zn2 → Z2, and
a function φ : Zn2 × Zn2 × Zn2 → Z2, respectively:

ux · uy = (−1)β(x,y) uy · ux, (2.4)

ux · (uy · uz) = (−1)φ(x,y,z) (ux · uy) · uz, (2.5)

where explicitly

β(x, y) = f(x, y) + f(y, x), (2.6)

φ(x, y, z) = f(y, z) + f(x+ y, z) + f(x, y + z) + f(x, y). (2.7)

Such structures were studied in a more general setting, see e.g. [2, 1].
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Definition 2.2. [5] The algebra Op,q is the twisted group algebra (R [Zn2 ] , fOp,q) with the
twisting function

fOp,q (x, y) =
∑

1≤i<j<k≤n
(xixjyk + xiyjxk + yixjxk) +

∑
1≤i≤j≤n

xiyj +
∑

1≤i≤p
xiyi, (2.8)

n = p+ q ≥ 3.

Remark 2.3. The algebra O0,3 is nothing but the classical algebra O. Comparing the defini-
tions of the twisting functions (2.2), (2.3) and (2.8) gives a first viewpoint to understand the
algebras Op,q as a generalization of O in the same way as Clp,q generalize H.

For both series of algebras Clp,q and Op,q the index (p, q) is called the signature.

2.2 Twisted group algebras as graded algebras

By definition, every twisted group algebra (R [Zn2 ] , f) is a natural graded algebra over the
group Zn2 . Consider the following basis elements of the abelian group Zn2 :

ei := (0, . . . , 0, 1, 0, . . . , 0),

where 1 stands at ith position. The corresponding homogeneous elements ui := uei , 1 ≤ i ≤ n,
form a set of generators of the algebra (R [Zn2 ] , f). The degree of every generator is an element
of Zn2 :

ūi := (0, . . . , 0, 1, 0, . . . , 0) = ei,

where 1 stands at ith position. Let u = ui1 · · ·uik be any monomial in the generators, define
its degree (independently from the parenthesizing in the monomial) by

ū := ūi1 + · · ·+ ūik , (2.9)

which is again an element of Zn2 . The relations between the generators ui are entirely deter-
mined by the function f .

Note that the element 1 := u(0,...,0) is the unit of the algebra. Note also that the algebra
is graded-commutative and graded-associative, as relations of type(2.4), (2.5) hold between
homogeneous elements.

2.3 Generators and relations, the second definition of Op,q

We give here an alternative definition of the algebras Op,q with generators and relations, see [5].
In order to make this definition clear, we start with the classical abstract definition of the

Clifford algebras. The algebra Clp,q is the unique associative algebra generated by n elements
v1, . . . , vn, where n = p+ q, subject to the relations:

v2
i =

®
1 if 1 ≤ i ≤ p,
−1 if p+ 1 ≤ i ≤ n,

vi · vj = −vj · vi, for all i 6= j ≤ n.
(2.10)

Since Clp,q is associative, one of course has vi · (vj · vk) = (vi · vj) · vk for all i, j, k ≤ n.
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A similar definition of the algebrasOp,q consists in replacing the associativity by a condition
of graded-associativity. First notice that there is a unique trilinear (or tri-addidive) alternate
function φ : Zn2 × Zn2 × Zn2 → Z2, such that

φ(ei, ej , ek) = 1, (2.11)

for all i 6= j 6= k in {1, . . . , n}. This function is obviously symmetric, i.e.,

φ(x, y, z) = φ(x, z, y) = . . . = φ(z, y, x), (2.12)

for all x, y, z ∈ Zn2 .

Definition 2.4. [5] The algebra Op,q is the unique real unital algebra, generated by n elements
u1, . . . , un, where n = p+ q, subject to the relations

u2
i =

®
1 if 1 ≤ i ≤ p,
−1 if p+ 1 ≤ i ≤ n,

ui · uj = −uj · ui, for all i 6= j ≤ n.
(2.13)

together with the graded associativity

u · (v · w) = (−1)φ(ū,v̄,w̄)(u · v) · w, (2.14)

where u, v, w are monomials, and φ the unique trilinear alternate form given by (2.11).

In particular, the relation (2.14) implies

ui · (uj · uk) = −(ui · uj) · uk,

that is, the generators anti-associate with each other. Note that the algebra Op,q is graded-
alternative, i.e. u · (u · v) = u2 · v, for all homogeneous elements u, v.

2.4 The generating cubic form

We now want to give a brief account on the theory developed in [5] and give the main ideas
and main tools that we will need in the sequel.

Consider an arbitrary twisted group algebra A = (R [Zn2 ] , f). The multiplication rule of
the algebra is encoded by f . The structure of the algebra is encoded by β and φ, given in
(2.4)–(2.5) and (2.6)–(2.7).

Definition 2.5. A function α : Zn2 −→ Z2 is called a generating function for A, if

(i) f(x, x) = α(x),

(ii) β(x, y) = α(x+ y) + α(x) + α(y),

(iii) φ(x, y, z) = α(x+ y + z) + α(x+ y) + α(x+ z) + α(y + z) + α(x) + α(y) + α(z),

for x, y and z in Zn2 .

One of the main results of [5] is the following.
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Theorem. (i) A twisted group algebra A has a generating function if and only if the function
φ is symmetric as in (2.12).

(ii) The generating function α is a polynomial on Zn2 of degree ≤ 3.

This result defines a class of twisted group algebras. Every algebra of this class is charac-
terized by a cubic form on Zn2 . We will need the following converse result.

Proposition 2.6. Given any cubic function α : Zn2 −→ Z2 there exists a unique (up to
isomorphism) twisted group algebra A having α as a generating function.

Proof. The existence of such twisted group algebra was proven in [5]. There is a canonical
way to construct a twisting function f for which α will be a generating function. Let us recall
the construction. One writes explicitly f(x, y) from the expression of α(x) according to the
following procedure:

xixjxk 7−→ xixjyk + xiyjxk + yixjxk,

xixj 7−→ xiyj ,

xi 7−→ xiyi.

(2.15)

where 1 ≤ i < j < k ≤ n.
Assume that the twisted group algebra A has a generating cubic form α. Let us now prove

that A is unique.
First, notice that α uniquely determines the relations of degree 2 and 3 between the

generators ui. Indeed, u2
i = −1 if and only if α contains the linear term xi (otherwise u2

i = 1);
ui and uj anticommute if and only if α contains the quadratic term xixj (otherwise, they
commute); ui · (uj · uk) = −(ui · uj) · uk if and only if α contains the cubic term xixjxk
(otherwise, the generators associate).

The monomials
u′x = ui1 · (ui2 · ( · · · (uil−1

· uil) · · · )),

for x = ei1 + ei2 + . . .+ eil with i1 < i2 < . . . < il form a (Poincaré-Birkhoff-Witt) basis of the
algebra. The product u′x · u′y of two such monomials is equal to the monomial ±u′x+y. The
sign can be determined by using only sequences of commutation and association between the
generators, and the squares of the generators. Therefore the structure constants related to
this basis are completely determined. A twisting function f ′ is deduced from

u′x · u′y =: (−1)f
′(x,y)u′x+y.

Remark 2.7. (i) Two isomorphic algebras may have different generating functions. For
instance the algebra determined by

α(x) =
∑

1≤i<j≤n−1

xixjxn +
∑

1≤i≤j≤n
xixj +

∑
1≤i≤p

xi.

is isomorphic to Op,q, when q > 0 (by sending ui to uei+en , 1 ≤ i ≤ n− 1, and un to un.)
(ii) In [5], the definition of generating function was given in a slightly more general situation

of a quasialgebra A, and therefore did not include the condition (i) in the definition. The
condition (i) will also allow us to determine uniquely the algebra A.
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2.5 The generating cubic form of the algebra Op,q

The algebras Op,q (as well as the Clifford algebras) have generating cubic forms given by

αp,q(x) = fOp,q(x, x) = αn(x) +
∑

1≤i≤p
xi,

where
αn(x) =

∑
1≤i<j<k≤n

xixjxk +
∑

1≤i<j≤n
xixj +

∑
1≤i≤n

xi.

The cubic form αn is invariant under the action of the group of permutations of the
coordinates. Therefore, the value αn(x) depends only on the weight (i.e. the number of
nonzero components) of x and can be easily computed. More precisely, for x = (x1, . . . , xn)
in Zn2 , we denote the Hamming weight of x by

|x| := #{xi 6= 0}.

One has

αn(x) =

®
0, if |x| ≡ 0 mod 4,
1, otherwise. (2.16)

The existence of a generating cubic form gives a way to distinguish the algebras Clp,q and
Op,q from other twisted group algebras. For instance, the Cayley-Dickson algebras do not have
generating cubic forms. Let us also mention that the generating cubic form is a very useful
tool for the study of the algebras.

2.6 Nonassociative extension of Clifford algebras, the third definition of
Op,q

Let us describe the third way to define the algebras Op,q.
Consider the subalgebra of the algebra Op,q consisting in the elements of even degree. The

basis of this subalgebra is as follows

{ux : x ∈ (Z2)n, |x| ≡ 0 mod 2}.

Proposition 2.8. The subalgebra of Op,q of even elements is isomorphic to the Clifford algebra
Clp,q−1, for q > 0.

Proof. Indeed, consider the following elements:

vi := uei+en , for all 1 ≤ i ≤ n− 1.

They generate all the even elements and they satisfy
v2
i = 1, if 1 ≤ i ≤ p,
v2
i = −1, if p+ 1 ≤ i ≤ n− 1,

vi · vj = −vj · vi, for all i 6= j ≤ n− 1,
vi · (vj · vk) = (vi · vj) · vk, for all i, j, k ≤ n− 1.

Linearity of the function φ implies that vi generate an associative algebra. The above system
of generators is therefore a presentation for the real Clifford algebra Clp,q−1.
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In other words, the algebra Op,q, for q 6= 0, contains the following Clifford subalgebra:

Clp,q−1 ⊂ Op,q. (2.17)

The algebraOp,q thus can be viewed as a nonassociative extension of this Clifford subalgebra by
one odd element, un, anticommuting and antiassociating with all the elements of the Clifford
algebra, except for the unit. As a vector space,

Op,q ' Clp,q−1 ⊕ (Clp,q−1 · un) .

We will use the notation: Op,q ' Clp,q−1 ? un. This viewpoint is illustrated by Figure 1 in the
case of quaternions and octonions.

j

l

liklj

ji

lk

i

k

Figure 1: Multiplication in the algebras of quaternions (left) and of octonions (right)

2.7 Comparison of Clp,q and Op,q

As mentioned in the previous section, there is a strong analogy between the algebras Clp,q and
Op,q in terms of the various possible presentations of the algebras. Comparison of results on
Clp,q and Op,q from [5], can be expressed in the following table.

Clifford algebras Algebras Op,q

Clp,q is simple if and only if: Op,q is simple if and only if:
p+ q 6≡ 1 mod 2 p+ q 6≡ 0 mod 4

or or
p+ q ≡ 1 mod 2 and p− q ≡ 3 mod 4 p+ q ≡ 0 mod 4 and p, q even

if Clp,q is not simple, then if Op,q is not simple, then
Clp,q ' A⊕A, Op,q ' A⊕A,

where where
A ' Clp−1,q ' Clp,q−1 A ' Op−1,q ' Op,q−1

if Clp,q is simple and p+ q ≡ 1 mod 2, if Op,q is simple and p+ q ≡ 0 mod 4,
then Clp,q ' A, then Op,q ' A,

where where
A ' Clp,q−1 ⊗ C ' Clp−1,q ⊗ C A ' Op,q−1 ⊗ C ' Op−1,q ⊗ C

(A is a C-algebra independent of (p, q)) (A is a C-algebra independent of (p, q))
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3 Classification

In this section, we formulate and prove our main results. The problem we consider is to
classify the isomorphisms Op,q ' Op′,q′ that preserve the structure of Zn2 -graded algebra. This
means, the isomorphisms sending homogeneous elements into homogeneous. We conjecture
that whenever there is no isomorphism preserving the structure of Zn2 -graded algebra the
algebras are not isomorphic.

In the end of the section, we present a table illustrating the results.

3.1 Statement of the main results

Our main result is as follows.

Theorem 1. If pq 6= 0, then there are the following isomorphisms of graded algebras:

(i) Op,q ' Oq,p ;

(ii) Op,q+4 ' Op+4,q ;

(iii) Every isomorphism between the algebras Op,q preserving the structure of Zn2 -graded al-
gebra is a combination of the above isomorphisms.

(iv) For n ≥ 5, the algebras On,0 and O0,n are not isomorphic, and are not isomorphic to
any other algebras Op,q with p+ q = n.

Part (i) of the theorem gives a “vertical symmetry” with respect to p− q = 0 and may be
compared to the vertical symmetry with respect to p− q = 1 in the case of Clifford algebras:

Clp,q ' Clq+1,p−1.

Part (ii) gives a periodicity modulo 4 that also holds in the Clifford case:

Clp+4,q ' Clp,q+4.

Another way to formulate Theorem 1 is as follows.

Corollary 3.1. Assume that p, p′, q, q′ 6= 0, then Op,q ' Op′,q′ if and only if the corresponding
Clifford subalgebras (2.17) are isomorphic; the algebras On,0 and O0,n are exceptional.

3.2 Construction of the isomorphisms

In this section, we establish a series of lemmas that provides all possible isomorphisms between
the algebras Op,q. Most of them have to be treated according to the congruence class of
n = p+ q modulo 4.

We start with the algebras of small dimensions.

Lemma 3.2. For n = 3, one has:

O3,0 ' O2,1 ' O1,2 6' O0,3.
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Proof. To establish the isomorphism O3,0 ' O2,1, we consider the following coordinate trans-
formation: 

x′1 = x1,
x′2 = x1 + x3,
x′3 = x1 + x2 + x3.

It is easy to check that α3,0(x′) = α2,1(x).
To establish the isomorphism O2,1 ' O1,2, we can apply the above coordinate transforma-

tion twice. We can also use the Clifford subalgebras. Write O2,1 ' Cl2,0 ? u3 using

v1 = ue1+e3 , v2 = ue2+e3 ,

as generators of Cl2,0. Change these generators according to

v′1 = v1 · v2, v′2 = v2.

This gives two generators of Cl1,1 ' Cl2,0 inside O2,1 that still anticommute and antiassociate
with u3. Hence, O2,1 ' Cl1,1 ? u3 ' O1,2.

Let us prove that O0,3 is not (graded-)isomorphic to the other algebras. In the algebra
O0,3 all seven homogeneous basis elements different from the unit square to −1, whereas in
O3,0,O2,1 and O1,2 three elements square to −1 and four square to 1. Hence, there is no
graded-isomorphism over R.

Remark 3.3. Let us also mention that O0,3 is isomorphic to the classical algebra of octonions,
whereas O3,0 ' O2,1 ' O1,2 are isomorphic to the classical algebra of split octonions, see [5].

Lemma 3.4. For n = 4, one has:

O4,0 ' O2,2 and O3,1 ' O1,3.

Proof. Consider the original basis {ux}x∈Z4
2
of O4,0, and as usual we simply denote by ui = uei .

The following set of elements 
u′1 = ue1+e4 ,
u′2 = ue2+e4 ,
u′3 = u3,
u′4 = u4,

form a system of generators, that anticommute and antiassociate. The signature of this set is
(2, 2). Hence, O4,0 is isomorphic to O2,2.

Similarly, consider the following change of generators
u′1 = ue2+e3+e4 ,
u′2 = ue1+e3+e4 ,
u′3 = ue1+e2+e4 ,
u′4 = ue1+e2+e3 .

The new generators anticommute and antiassociate and have signature (3, 1) if the initial ones
had signature (1, 3) and vice versa. Hence the isomorphism O3,1 ' O1,3.

Note that in order to determine the (anti)commutativity or the (anti)associativity between
elements one can use the formulas (ii) and (iii) of Definition 2.5 and evaluate them using the
standard form αn (2.16) (since linear terms vanish in the formulas (ii) and (iii)) which depends
only on the Hamming weight of the elements.

We now extend our method to higher dimensional algebras.
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Lemma 3.5. If p+ q = 4k and p, q are even, then

Op,q ' Op,q−1 ⊕Op−1,q, if p ≥ 2 and q ≥ 2,

and
O4k,0 ' O4k−1,0 ⊕O4k−1,0 , O0,4k ' O0,4k−1 ⊕O0,4k−1.

This statement is proved in [5] in the complex case (see Theorem 3, p. 100). The proof in the
real case is identically the same.

The next four lemmas give the list of isomorphisms with respect to the congruence class
p+ q modulo 4.

Lemma 3.6. (i) If p+ q = 4k and p, q are even, then

Op,q ' Op+4,q−4, if p ≥ 2 and q ≥ 6.

(ii) If p+ q = 4k and p, q are odd, then

Op,q ' Op+2,q−2, if p ≥ 1 and q ≥ 3.

Proof. We define a new set of generators splitted in blocks of four elements
u′4i+1 = ue4i+2+e4i+3+e4i+4 ,
u′4i+2 = ue4i+3+e4i+4+e4i+1 ,
u′4i+3 = ue4i+4+e4i+1+e4i+2 ,
u′4i+4 = ue4i+1+e4i+2+e4i+3 .

for every i ∈ {0, . . . , k− 1}. This new generators are still anticommuting and antiassociating.
The signature in each block remains unchanged if the initial one was (4, 0), (2, 2) or (0, 4) and
changes from (3, 1) to (1, 3) and vice versa. Therefore one can organize the generators in the
blocks in order to obtain the desired isomorphisms.

Lemma 3.7. If p+ q = 4k + 1, then

Op,q ' Op−4,q+4, if p− 4 ≥ 1 and q ≥ 1,

Op,q ' Op+1,q−1, if p ≥ 1 and q − 1 ≥ 1, p even.

Proof. Consider the same change of the first 4k generators as in Lemma 3.6, and change also
the last generator as follows

u′4i+1 = ue4i+2+e4i+3+e4i+4 ,
u′4i+2 = ue4i+3+e4i+4+e4i+1 ,
u′4i+3 = ue4i+4+e4i+1+e4i+2 ,
u′4i+4 = ue4i+1+e4i+2+e4i+3 ,

and u′n = uz,

where i ∈ {0, . . . , k − 1}, and z denotes the element of maximal weight:

z = (1, . . . , 1) ∈ Zn2 .

One then checks directly that these changes give the desired isomorphisms.
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Lemma 3.8. (i) If p+ q = 4k + 2 and p, q are odd, then

Op,q ' Op+4,q−4, if p ≥ 1 and q ≥ 5.

(ii) If p+ q = 4k + 2 and p, q are even, then

Op,q ' Op−2,q+2, if p ≥ 4 and q ≥ 2.

Proof. Consider the following change of the generators{
u′i = uei+w2 , if 1 ≤ i ≤ 4,

u′i = ui, otherwise,

where w2 = (0, 0, 0, 0, 1, . . . , 1) is an element in Zn2 .

Lemma 3.9. If p+ q = 4k + 3, then

Op,q ' Op−4,q+4, if p− 4 ≥ 1 and q ≥ 1,

Op,q ' Op−1,q+1, if p ≥ 1 and q ≥ 1, p even.

Proof. The isomorphisms are given by considering the following change of the generators
u′i = uei+w3 , if 1 ≤ i ≤ 4,
u′i = ui, if 1 ≤ i ≤ p+ q − 2,

u′p+q−1 = uw1 ,

u′p+q = uw2 ,

where w1 = (1, . . . , 1, 0), w2 = (0, 0, 0, 0, 1, . . . , 1) and w3 = (0, 0, 0, 0, 1, . . . , 1, 0) are elements
in Zn2 .

The combination of all the above lemmas implies Theorem 1, part (i) and part (ii).

Remark 3.10. The isomorphisms Op,q ' Op−1,q+1, in the case n = p+q = 4k+3, p even, can
be established using connection to Clifford algebras. Indeed, consider the Clifford subalgebra
Clp,q−1 ⊂ Op,q, see Section 2.4, with the generators vi. For p + q = 4k + 3 and p even, the
classical isomorphism is

Clp,q−1 ' Clp−1,q.

This isomorphism can be given by the change of variables on generators:{
v′1 = v1 · · · vn−1,

v′i = vi, if 1 ≤ i ≤ p+ q − 1.

Add the generator un of weight 1 that anticommutes and antiassociates with v′i, one obtains
the algebra Op−1,q+1. Hence the result.

The above isomorphism can be illustrated by the following diagram:

Clp,q−1 ⊂ < v1, . . . , vn−1 > ? < un > ' < v′1, . . . , v
′
n−1 > ? < un > ⊃ Clp−1,q'
'

Op,q Op−1,q+1
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3.3 Criterion of non isomorphism

In order to prove Theorem 1, Parts (iii) and (iv), we will define an invariant of the algebras:
we count how many homogeneous basis elements square to −1. This invariant will be called
the statistics.

Definition 3.11. Define the statistics of the algebra Op,q by

s(p, q) := # {x ∈ Zn2 : αp,q(x) = 1} .

Clearly,
0 ≤ s(p, q) ≤ 2n,

where n = p+ q.

Lemma 3.12. The number s(p, q) is invariant with respect to an isomorphism preserving the
structure of Zn2 -graded algebra.

Proof. An isomorphism preserving the structure of Zn2 -graded algebra sends homogeneous
basis elements to homogeneous. Since homogeneous components of Op,q are of dimension 1,
this means that the isomorphism multiplies every basis element u by a constant. Hence it
preserves the sign of u2.

Our goal is to show that
s (n, 0) < s (p, q) < s (0, n) ,

for all p, q 6= 0, where p+ q = n.

Lemma 3.13. Let n ≥ 3, the algebras O0,n and On,0 are not isomorphic.

Proof. We compute the statistics for these algebras:

s (n, 0) =
k∑
i=0

4i+2≤n

Ç
n

4i+ 2

å
, s (0, n) = 2n −

k∑
i=0
4i≤n

Ç
n

4i

å
.

Clearly, s (n, 0) 6= s (0, n) since

k∑
i=0
4i≤n

Ç
n

4i

å
+

k∑
i=0

4i+2≤n

Ç
n

4i+ 2

å
<

n∑
i=0

Ç
n

i

å
= 2n.

Lemma 3.14. Let n ≥ 5, the algebras On,0 and O0,n are not isomorphic to any algebras Op,q.
Furthermore, we have the different cases.
If n = 4k, then

On−1,1 6' On−2,2 6' On−4,4.

If n = 4k + 1, then
On−1,1 6' On−2,2.

If n = 4k + 2, then
On−1,1 6' On−2,2 6' On−3,3.

If n = 4k + 3, then
On−1,1 6' On−3,3.
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Proof. Let n = 4k, then

s (n− 1, 1) =
k−1∑
i=0

Ç
n− 1

4i

å
+ 2

Ç
n− 1

4i+ 2

å
+

Ç
n− 1

4i+ 3

å
,

s (n− 2, 2) =
k−1∑
i=0

3

Ç
n− 2

4i

å
+ 3

Ç
n− 2

4i+ 2

å
+
k−2∑
i=0

2

Ç
n− 2

4i+ 3

å
,

s (n− 4, 4) =
k∑
i=0

14

Ç
n− 4

4i

å
+
k−2∑
i=0

4

Ç
n− 4

4i+ 1

å
+ 10

Ç
n− 4

4i+ 2

å
+ 4

Ç
n− 4

4i+ 3

å
.

Let n = 4k + 1, then

s (n− 1, 1) =
k−1∑
i=0

Ç
n− 1

4i

å
+ 2

Ç
n− 1

4i+ 2

å
+

Ç
n− 1

4i+ 3

å
+

Ç
n− 1

n− 1

å
,

s (n− 2, 2) =
k−1∑
i=0

3

Ç
n− 2

4i

å
+ 3

Ç
n− 2

4i+ 2

å
+ 2

Ç
n− 2

4i+ 3

å
.

Let n = 4k + 2, then

s (n− 1, 1) =
k−1∑
i=0

Ç
n− 1

4i

å
+ 2

Ç
n− 1

4i+ 2

å
+

Ç
n− 1

4i+ 3

å
+

Ç
n− 1

n− 2

å
,

s (n− 2, 2) =
k∑
i=0

3

Ç
n− 2

4i

å
+
k−1∑
i=0

3

Ç
n− 2

4i+ 2

å
+ 2

Ç
n− 2

4i+ 3

å
,

s (n− 3, 3) =
k−1∑
i=0

7

Ç
n− 3

4i

å
+

Ç
n− 3

4i+ 1

å
+ 5

Ç
n− 3

4i+ 2

å
+ 3

Ç
n− 3

4i+ 3

å
.

Let n = 4k + 3, then

s (n− 1, 1) =
k∑
i=0

Ç
n− 1

4i

å
+ 2

Ç
n− 1

4i+ 2

å
+
k−1∑
i=0

Ç
n− 1

4i+ 3

å
,

s (n− 3, 3) =
k∑
i=0

7

Ç
n− 3

4i

å
+
k−1∑
i=0

Ç
n− 3

4i+ 1

å
+ 5

Ç
n− 3

4i+ 2

å
+ 3

Ç
n− 3

4i+ 3

å
.

For n ≥ 5, all the above the statistics are distinct and are strictly bounded by s(n, 0), the
minimum, and s(0, n), the maximum.

Considering the symmetry and the periodicity, the above lemmas imply Theorem 1, Parts
(iii) and (iv).

3.4 Table of Op,q

The following table allows one to visualize the classes of algebras Op,q and the corresponding
statistics.
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O
1
2
,0

1
0
5
6

O
1
1
,1

2
0
4
8

O
1
0
,2

2
0
1
6

O
9
,3

2
0
4
8

O
8
,4

2
0
8
0

O
7
,5

2
0
4
8

O
6
,6

2
0
1
6

O
5
,7

2
0
4
8

O
4
,8

2
0
8
0

O
3
,9

2
0
4
8

O
2
,1

0
2
0
1
6

O
1
,1

1
2
0
4
8

O
0
,1

2
3
1
0
4

O
1
1
,0

5
2
8

O
1
0
,1

1
0
0
8

O
9
,2

1
0
0
8

O
8
,3

1
0
4
0

O
7
,4

1
0
4
0

O
6
,5

1
0
0
8

O
5
,6

1
0
0
8

O
4
,7

1
0
4
0

O
3
,8

1
0
4
0

O
2
,9

1
0
0
8

O
1
,1

0
1
0
0
8

O
0
,1

1
1
5
5
2

O
1
0
,0

2
5
6

O
9
,1

4
9
6

O
8
,2

5
1
2

O
7
,3

5
2
8

O
6
,4

5
1
2

O
5
,5

4
9
6

O
4
,6

5
1
2

O
3
,7

5
2
8

O
2
,8

5
1
2

O
1
,9

4
9
6

O
0
,1

0
7
6
8

O
9
,0

1
2
0

O
8
,1

2
4
8

O
7
,2

2
6
4

O
6
,3

2
6
4

O
5
,4

2
4
8

O
4
,5

2
4
8

O
3
,6

2
6
4

O
2
,7

2
6
4

O
1
,8

2
4
8

O
0
,9

3
7
6

O
8
,0

5
6

O
7
,1

1
2
8

O
6
,2

1
3
6

O
5
,3

1
2
8

O
4
,4

1
2
0

O
3
,5

1
2
8

O
2
,6

1
3
6

O
1
,7

1
2
8

O
0
,8

1
8
4

O
7
,0

2
8

O
6
,1

6
8

O
5
,2

6
8

O
4
,3

6
0

O
3
,4

6
0

O
2
,5

6
8

O
1
,6

6
8

O
0
,7

9
2

O
6
,0

1
6

O
5
,1

3
6

O
4
,2

3
2

O
3
,3

2
8

O
2
,4

3
2

O
1
,5

3
6

O
0
,6

4
8

O
5
,0

1
0

O
4
,1

1
8

O
3
,2

1
4

O
2
,3

1
4

O
1
,4

1
8

O
0
,5

2
6

O
4
,0

6

O
3
,1

8

O
2
,2

6

O
1
,3

8

O
0
,4

1
4

O
3
,0

3

O
2
,1

3

O
1
,2

3

O
0
,3

7

F
ig
ur
e
2
:
Su

m
m
ar
y
ta
bl
e
of

cl
as
si
fic

at
io
n
of

al
ge
br
as

O
p
,q
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The table is useful to understand the symmetry and periodicity results. The first two rows
are different than the others as in small dimensions some “degeneracy” occurs. The two main
properties Op,q ' Oq,p and Op,q+4 ' Op+4,q are symmetry with respect to the vertical middle
axis and a periodicity on each row of the table, respectively. The algebras, On,0 and O0,n, are
exceptional. On each row, besides the two exceptional algebras, there are exactly two other
non-isomorphic algebras in the case n is odd, and exactly three in the case n is even (n ≥ 5).
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