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Abstract. We develop further the theory of q-deformations of real numbers introduced in [MGO20]

and [MGO19b] and focus in particular on the class of real quadratic irrationals. Our key tool is a

q-deformation of matrices of the modular group PSL(2,Z). The action of the modular group by Möbius
transformations commutes with the q-deformations. We prove that the traces of the q-deformed matrices

are palindromic polynomials with positive coefficients. These traces appear in the explicit expressions

of the q-deformed quadratic irrationals.
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1. Introduction

A q-deformation of rational and irrational numbers was introduced in [MGO20] and [MGO19b]. The
approach is based on combinatorial properties of the rational numbers. The subject can be linked to
classical topics such as the Markov-Hurwitz approximation theory [LMGOV], see aslo [CV20], [Kog20],
combinatorics of posets [MSS20], knots invariants [KW19].

The q-deformation of a rational number is a rational function in the parameter q with integer coeffi-
cients. It can be obtained using a q-deformation of the classical recursive procedure generating the ratio-
nals via Farey sums. Alternatively, it can be computed using explicit formulas involving a q-deformation
of the continued fraction expansion of the number. It is sometimes convenient to consider the q-rational
number as a formal power series using the Taylor expansion of the rational function.

It was proved in [MGO19b] that if (xn)n is an arbitrary sequence of rational numbers converging to
an irrational number x, then the sequence of the power series of the q-rationals ([xn]q)n converges to a
power series depending only on x and this allows to define the limit as [x]q the q-deformation of x.

Many natural questions arise. Among them we focus on the following:
(1) How do algebraic operations on the real numbers behave under q-deformations?
(2) Do the q-deformations of algebraic numbers satisfy algebraic equations?
Regarding question (1) our main result is

Theorem 1. For all x ∈ R, the q-deformations satisfy

[x+ 1]q = q[x]q + 1,(1.1) [
− 1

x

]
q

= −q−1 1

[x]q
.(1.2)

Regarding question (2) we restrict ourselves to the class of real quadratic irrationals and obtain the
following results.

Theorem 2. Let x =
r±√p

s be a quadratic irrational. Its q-deformation [x]q satisfy the following

(i) [x]q = R±
√
P

S , with R,P,S ∈ Z[q], and P a palindrome;

(ii) [x]q is solution of an equation AX2 + BX + C = 0, with A,B, C ∈ Z[q];
(iii) there exists a matrix Mq ∈ GL(2,Z[q±1]) such that Mq · [x]q = [x]q;
(iv) [x]q has a periodic continued fraction expansion.

One of the main ingredient in our approach is a q-deformation of the elements of the modular group
PSL(2,Z). More precisely one considers the following matrices that are q-deformations of standard
generators of PSL(2,Z):

Rq :=

(
q 1

0 1

)
, Sq :=

(
0 −q−1

1 0

)
,

and one defines PSLq(2,Z) as the subgroup generated by the classes of Rq and Sq in the quotient group
GL(2,Z[q±1])/{±qN Id, N ∈ Z}.

Proposition 1.1. The group PSLq(2,Z) is isomorphic to PSL(2,Z).

As a reformulation of Theorem 1 one obtains that the action of the modular group by Möbius trans-
formations commute with the q-deformations. This is a key tool for the proof of Theorem 2. Moreover
we obtain the following interesting combinatorial property on the traces of the elements of PSLq(2,Z).

Theorem 3. The traces of the elements in PSLq(2,Z) are palindromic polynomials in Z[q] with positive
integer coefficients, modulo a multiplicative factor ±qN .
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In all the examples we observe furthermore that the sequence of coefficients in the traces is unimodal,
and we formulate this property as a conjecture.

Theorem 3 implies the palindromicity property of the polynomial P in Theorem 2. Usually q-analogues
of positive integers are given by polynomials in q with positive integer coefficients. One could expect that
the polynomial P has positive coefficients, but this is not the case in general. However we observe on all
the examples we have computed that this polynomial always factors out with a non-trivial polynomial
that has positive coefficients.

The paper is organized as follows.
In Section 2 we give the definitions of the q-deformed rational and irrational numbers introduced in

[MGO20] and [MGO19b]. We present a more general definition for the q-irrationals and obtain a new
description using continued fraction expansions with arbitrary integer coefficients, Theorem 4. We also
describe q-irrational numbers using infinite continued fraction expansions.

In Section 3 we introduce a q-deformation of the group PSL(2,Z). This q-deformation is the main tool
to prove Theorem 2 and Theorem 4. The entries of the q-deformed matrices are Laurent polynomials in
q with integer coefficients. We prove Theorem 3 and conjecture the unimodality property of the traces.
We illustrate the results with examples of Cohn matrices arising in the theory of Markov triples.

In Section 4 we focus on the case of quadratic irrationals. The general expression for the q-quadratic
irrationals given in Theorem 2 (i) was not a priori guaranteed from the deformation process introduced
in [MGO19b] but it becomes clear from the view point of the matrix action. Explicit formulas for the
polynomials R, P, S and A, B, C are given in terms of continuants, Propositions 4.2 and 4.3. Finally we
give concrete examples of q-quadratic irrationals.

2. q-deformed numbers and q-continued fractions

Following [MGO20] and [MGO19b], we define the q-deformation [x]q of every real numbers x as a
Laurent series with integer coefficients. In the latter papers the definition of [x]q was given for x > 1
and then extended to all reals using a recursion [x− 1]q = q−1[x]q − q−1. Here we use a uniformized and
equivalent definition for all reals x.

2.1. q-rationals. We adopt the following classical q-deformations of integers

[n]q =
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1

[−n]q =
1− q−n

1− q
= −q−1 − q−2 − · · · − q−n.

for any n ∈ Z>0. Obviously one has [n]q ∈ Z>0[q] and [−n]q ∈ Z<0[q−1]. We also assume [0]q = 0.
Considering a rational r

s ∈ Q we always assume r and s coprime and s > 0. We use continued fraction
expansions. Every r

s ∈ Q has a unique expression of the form

(2.1)
r

s
= a1 +

1

a2 +
1

. . . +
1

a2m

with ai ∈ Z and ai ≥ 1 for i ≥ 2. We use the notation [a1, a2, . . . , a2m] for the RHS of (2.1).
Following [MGO20] one defines the q-deformation of r

s = [a1, a2, . . . , a2m] as
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(2.2) [ rs ]q := [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . .

[a2m−1]q +
qa2m−1

[a2m]q−1

.

The continued fraction in the RHS of equation (2.2) is denoted by [a1, . . . , a2m]q.
Alternatively one can use the negative continued fraction expansion, also known as Hirzebruch-Jung

continued fractions. Every r
s ∈ Q has a unique expression of the form

(2.3) r
s = c1 −

1

c2 −
1

. . . −
1

ck

with ci ∈ Z and ci ≥ 2 for i ≥ 2. As in [Hir73] we use the notation Jc1, c2, . . . , ckK for the RHS of (2.3).
One obtains the q-deformation of r

s = Jc1, c2, . . . , ckK ∈ Q as

(2.4) [ rs ]q = [c1]q −
qc1−1

[c2]q −
qc2−1

. . . −
qck−1−1

[ck]q

.

The continued fraction in the RHS of equation (2.4) is denoted by Jc1, c2, . . . , ckKq.
The fact that the two deformations (2.2) and (2.4) coincide is not obvious at first sight and was proved

in [MGO20] when the coefficients satisfy ai > 1 and ci ≥ 2 for all i. It turns out that this result can
be extended to fractions with arbitrary integer coefficients. The following theorem will be deduced from
results of the next section, see §3.5.

Theorem 4. Let a1, . . . , a2m and c1, c2, . . . , ck be sequences of integers such that the continued fractions
[a1, . . . , a2m] and Jc1, c2, . . . , ckK are well defined and are equal to the same rational number r

s . One has

[a1, . . . , a2m]q = Jc1, c2, . . . , ckKq =
[r
s

]
q
.

Remark 2.1. In [MGO20] the q-deformations of rational numbers was defined in the case of numbers
greater than 1, i.e. for a1 ≥ 1 and c1 ≥ 2 in the expansions (2.1) and (2.3). The notion was later extend
to all rational numbers in [MGO19b] using the recursion

[x− 1]q = q−1[x]q − q−1.

It turns out that this way to extend the definition is equivalent to allow a1 ∈ Z and c1 ∈ Z in the
expansions (2.1) and (2.3), see [Lec] for details.
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Example 2.2. (a) Here are some examples that can be computed directly from the definitions

(2.5)

[
− 5

3

]
q

= [−2, 3]q = J−1, 2, 2Kq = −q−2 1+2q+q2+q3

1+q+q2[
− 1

4

]
q

= [−1, 1, 3]q = J0, 4Kq = −q−1 1
1+q+q2+q3[

5
12

]
q

= [0, 2, 2, 2]q = J1, 3, 2Kq = q2 1+2q+q2+q3

1+2q+3q2+3q3+2q4+q5[
3
5

]
q

= [0, 1, 1, 2]q = J1, 2, 4, 2Kq = q 1+q+q2

1+2q+q2+q3[
5
3

]
q

= [1, 1, 1, 1]q = J2, 3Kq = 1+q+2q2+q3

1+q+q2[
12
5

]
q

= [2, 2, 1, 1]q = J3, 2, 3Kq = 1+2q+3q2+3q3+2q4+q5

1+q+2q2+q3

(b) Only very few q-deformations of rationals are obtained as the ratio of the q-integers in the numerators
and denominators. For instance for r ∈ Z>0,[

r + 1

r

]
q

=
[r + 1]q

[r]q
,

[
r

r + 1

]
q

= q
[r]q

[r + 1]q
,

[
−r + 1

r

]
q

= −q−2 [r + 1]q
[r]q

,

[
− r

r + 1

]
q

= −q−1 [r]q
[r + 1]q

.

Example 2.3. Let us illustrate Theorem 4. Alternatively, 5
3 = [2,−1,−1, 2] = J−1, 0, 3, 3K and one

computes

[2,−1,−1, 2]q = 1 + q +
q2

−q +
q

−q−1 +
q−1

1 + q−1

=
1 + q + 2q2 + q3

1 + q + q2
,

J−1, 0, 3, 3Kq = −q−1 −
q−2

0−
q−1

1 + q + q2 −
q2

1 + q + q2

=
1 + q + 2q2 + q3

1 + q + q2
.

The q-deformations [a1, . . . , a2m]q and Jc1, c2, . . . , ckKq can be written as rational functions in q with
integer coefficients. The general expression for [ rs ]q is as follows.

Proposition 2.4 ([MGO20]). Let r
s be a non zero rational number.

(i) There exist a unique couple of coprime polynomials R and S in Z[q] and N ∈ Z such that[r
s

]
q

= ±q−NR
S
,

where the sign coincides with the sign of r
s ;

(ii) The polynomials R and S have positive integer coefficients, they satisfy R(1) = |r|, S(1) = s, and
have constant and leading coefficients equal to 1;

(iii) If r
s ≥ 1 then N = 0, otherwise N is characterized by

−N ≤ r

s
< −N + 1, or 0 <

1

1−N
<
r

s
≤ 1

−N
< 1.

Remark 2.5. In [MGO20], it was conjectured that R and S have unimodal sequences of coefficients.
This was recently proved in some particular cases [MSS20] but the conjecture is still open in full generality.
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2.2. q-irrationals. The q-rationals defined in the previous section can be viewed as Laurent series with
integer coefficients, i.e. [r

s

]
q

=

+∞∑
k=−N

ρkq
k

with N ∈ Z≥0 as in Proposition 2.4, ρ−N = ±1, and ρk ∈ Z. If one is given a convergent sequence of
rationals then the coefficients in the corresponding power series stabilize. This was proved in [MGO19b]
in the case of numbers greater than one. This phenomenon still hold in full generality, see [Lec].

Theorem 5 ([MGO19b]). Let x ∈ R be an irrational number and (xn)n a sequence of rationals converging

to x, and let [xn]q =
∑
k

χn,kq
k be the corresponding q-deformations expanded as Laurent series.

(i) For all k, the sequence (χn,k)n converges;
(ii) The limit coefficient χk := limn→∞ χn,k is an integer which depends only on x and not on the

choice of the converging sequence (xn)n;
(iii) There exists N ∈ Z≥0 such that for all k < −N one has χk = 0 and χ(−N) = ±1.

This allows the following definition.

Definition 2.6. [MGO19b] The q-deformation of an irrational number x is the Laurent series

[x]q :=

+∞∑
k=−N

χkq
k.

where N ∈ Z≥0 and χk ∈ Z are given by Theorem 5.

Example 2.7. Theorem 5 says that if two rational numbers are close to each other (i.e. the difference
is close to 0) then their q-deformations are close to each other (i.e. the Taylor series expansions coincide
up to some order). For instance if one considers the rationals 12

5 = 2.4, 241
100 = 2.41 and 408

169 ≈ 2.41420
their q-deformations are quite different as rational fractions but their Taylor expansions coincide up to
order 7. One has[

12

5

]
q

=
1 + 2q + 3q2 + 3q3 + 2q4 + q5

1 + q + 2q2 + q3

= 1 + q + q4 − 2q6 + q7 + 3q8 − 3q9 − 4q10 + 7q11 + 4q12 + . . .[
241

100

]
q

=
q12 + 4q11 + 10q10 + 20q9 + 29q8 + 37q7 + 40q6 + 37q5 + 29q4 + 19q3 + 10q2 + 4q + 1

q10 + 4q9 + 8q8 + 13q7 + 17q6 + 18q5 + 16q4 + 12q3 + 7q2 + 3q + 1

= 1 + q + q4 − 2q6 + q7 + 3q8 − 2q9 − 7q10 + 9q11 + 7q12 − 17q13 + · · ·[
408

169

]
q

=
1 + 4q + 12q2 + 25q3 + 41q4 + 56q5 + 65q6 + 65q7 + 56q8 + 41q9 + 25q10 + 12q11 + 4q12 + q13

1 + 3q + 9q2 + 16q3 + 24q4 + 29q5 + 29q6 + 24q7 + 16q8 + 9q9 + 4q10 + q11

= 1 + q + q4 − 2q6 + q7 + 4q8 − 5q9 − 7q10 + 18q11 + 7q12 − 55q13 + 18q14 + 146q15 − 156q16 . . .

These numbers are close to 1 +
√

2 ≈ 2.41421. It turns out that
[
1 +
√

2
]
q

can be computed explicitly

(see Section 4.5) and one obtains

[1 +
√

2]q =
q3 + 2q − 1 +

√
q6 + 4q4 − 2q3 + 4q2 + 1

2q

= 1 + q + q4 − 2q6 + q7 + 4q8 − 5q9 − 7q10 + 18q11 + 7q12 − 55q13 + 18q14 + 146q15 − 155q16 . . .

which coincide up to order 16 with
[
408
169

]
q
.
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2.3. Proof of Theorem 1. From the explicit formula (2.2) one can easily check the relations of Theo-
rem 1 in the case where x is a rational. More precisely one gets

Proposition 2.8. For x ∈ Q, n ∈ Z, one has

[x+ n]q = qn[x]q + [n]q,(2.6)

[−x]q = −q−1[x]q−1 ,(2.7) [
1

x

]
q

=
1

[x]q−1

.(2.8)

The relations (2.7) and (2.8) do not make sense anymore for real numbers, as they involved comparison
of series in q and in q−1, however their combination in the form (1.2) does make sense. The relations
(1.1) and (1.2) holding in the case of q-rationals will be preserved in the limit process defining the q-reals.

2.4. Infinite continued fractions. It is well known that every irrational number can be written with
infinite continued fraction expansions. For every irrational number x there exist a sequence of integers
(ai)i≥1 with ai ≥ 1 for every i ≥ 2 such that the sequence of rationals Ja1, . . . , anK converges to x. One
writes

x = a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . .

.

and uses the notation x = [a1, a2, a3 . . .]. By Theorem 5, the sequence of rational fractions Ja1, . . . , a2mKq
converges to the formal power series [x]q. One writes

[a1, a2, a3 . . .]q := [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . .

.

and uses the notation [x]q = [a1, a2, a3 . . .]q.
Similarly with negative continued fractions, for every irrational number x there exist a sequence of

integers (ci)i≥1 with ci ≥ 2 for all i ≥ 2 such that the sequence of rationals Jc1, . . . , cnK converges to x.
One writes

x = c1 −
1

c2 −
1

c3 −
1

. . .

and uses the notation x = Jc1, c2, . . .K.
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By Theorem 5, the sequence of rational fractions Jc1, . . . , cnKq converges to the formal power series
[x]q. One writes

[x]q = [c1]q −
qc1−1

[c2]q −
qc2−1

[c3]q −
qc3−1

. . .
and uses also the notation [x]q = Jc1, c2, c3 . . .Kq.

3. q-deformations of unimodular matrices

In this section we define the q-deformation of a matrix M ∈ SL(2,Z) as an element in PGL(2,Z[q±1]).

3.1. Elementary matrices in SL(2,Z). First we introduce elementary matrices in SL(2,Z) and recall
some standard decomposition. The elementary matrices

R =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
,

are one of the standard choice of generators of the group SL(2,Z). They satisfy the following relations

(RS)3 = −Id, S2 = −Id

We will always consider the matrices up to a sign, i.e. as elements of PSL(2,Z) = SL(2,Z)/{±Id}. We
still denote by R and S the images of R and S in PSL(2,Z). It will be convenient to also consider the
elementary matrix

L :=

(
1 0

1 1

)
.

The couple (R,L) is also a standard choice of generators of SL(2,Z).

3.2. q-elements of the modular group (proof of Proposition 1.1). We consider the ring of Laurent
polynomials with integer coefficients Z[q±1] and its group of units U := Z[q±1]× = {±qN , N ∈ Z}. We
consider the following groups of 2× 2-matrices

GL(2,Z[q±1]) =

{(
A B
C D

) ∣∣A,B,C,D ∈ Z[q±1] : AD −BC ∈ U

}
,

PGL(2,Z[q±1]) = GL(2,Z[q±1])/U.

As in [MGO20] one introduces the following matrices

Rq :=

(
q 1

0 1

)
, Sq :=

(
0 −q−1

1 0

)
,

that are q-analogues of R and S and which satisfy (RqSq)3 = −Id, S2
q = −q−1Id.

One considers the subgroup generated by the classes of Rq and Sq inside PGL(2,Z[q±1]). One defines

PSLq(2,Z) := 〈Rq, Sq〉 ⊂ PGL(2,Z[q±1]).

In PSLq(2,Z) one has the relations (RqSq)3 = S2
q = Id, so that the following assignment

(3.1)
[ · ]q : R 7→ [R]q = Rq

S 7→ [S]q = Sq

realizes an isomorphism between PSL(2,Z) and PSLq(2,Z). Proposition 1.1 is proved.
One may consider the q-deformation [M ]q of any matrices M ∈ PSL(2,Z) via the map (3.1).
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Example 3.1. Computing the decomposition L = RSR one obtains the q-deformed matrix

[L]q =

(
q 0

q 1

)
.

3.3. Möbius transformation of the q-reals. The modular group PSL(2,Z) acts on the projective real
line via Möbius transformations:

M · x :=
ax+ b

cx+ d
, ∀x ∈ R ∪ {∞}, M =

(
a b
c d

)
∈ PSL(2,Z).

We consider the q-analogue action of PSL(2,Z) ' PSLq(2,Z) on Z[[q]] ∪ {∞}:

M · f :=
Af +B

Cf +D
, ∀f ∈ Z[[q]] ∪ {∞}, M =

(
A B
C D

)
∈ PSLq(2,Z).

Proposition 3.2. The PSL(2,Z)-actions commute with the q-deformations.

Proof. We want to show that [M · x]q = [M ]q · [x]q. It suffices to consider the cases M = R and M = S,
for which we know that the equalities hold by Theorem 1. �

3.4. q-deformed matrices and continued fractions. In this section we study the q-deformations of
elementary matrices related to continued fractions. Let us consider the generalized continued fraction

Fn = x1 +
y1

x2 +
y2

. . . +
yn−1

xn

,

where xi’s and yi’s are viewed as formal variables. It is well known, e.g. [Fra49], that it can be obtained
by 2× 2-matrix computations as below.

Lemma 3.3. The matrix product(
x1 y1

1 0

)(
x2 y2

1 0

)
· · ·

(
xn yn

1 0

)
=

(
Un ynUn−1

Vn ynVn−1

)
gives

Un

Vn
= Fn.

We introduce the matrices corresponding to the continued fraction expansions of types (2.1) and (2.3):

(3.2)

M+(a1, . . . , a2m) :=

(
a1 1

1 0

)(
a2 1

1 0

)
· · ·

(
a2m 1

1 0

)
,

M(c1, . . . , ck) :=

(
c1 −1

1 0

)(
c2 −1

1 0

)
· · ·

(
ck −1

1 0

)
.

defined for arbitrary sequences of integers a1, . . . , a2m and c1, c2, . . . , ck.
We want to apply the map (3.1) to these matrices. To do so we write the matrices as product of the

generators R and S or R and L. By direct computations one checks the following lemma.

Lemma 3.4. The matrix decompositions in terms of the generators are

M+(a1, . . . , a2m) = Ra1La2Ra3La4 · · ·Ra2m−1La2m ,

M(c1, . . . , ck) = Rc1S Rc2S · · ·RckS.
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Applying the map (3.1) one obtains the expressions for the q-deformed matrices.

Lemma 3.5. One has

(i) [M(c1, . . . , ck)]q =

(
[c1]q −qc1−1

1 0

)(
[c2]q −qc2−1

1 0

)
· · ·

[ck]q −qck−1

1 0

 ;

(ii) [M+(a1, . . . , a2m)]q

=

(
qa1 [a1]q

0 1

)(
qa2 0

q[a2]q 1

)
· · ·

(
qa2m−1 [a2m−1]q

0 1

)(
qa2m 0

q[a2m]q 1

)
,

=

(
[a1]q qa1

1 0

)(
q[a2]q 1

qa2 0

)
· · ·

(
[a2m−1]q qa2m−1

1 0

)(
q[a2m]q 1

qa2m 0

)
,

= qa2+a4+...+a2m

(
[a1]q qa1

1 0

)(
[a2]q−1 q−a2

1 0

)
· · ·

(
[a2m−1]q qa2m−1

1 0

)(
[a2m]q−1 q−a2m

1 0

)
.

The matrices in the above lemma are elements in PSLq(2,Z). It will be convenient to fix representatives
in GL(2,Z[q±1]). We define

(3.3) Mq(c1, . . . , ck) :=

(
[c1]q −qc1−1

1 0

)(
[c2]q −qc2−1

1 0

)
· · ·

(
[ck]q −qck−1

1 0

)
as a q-analogue of the matrix M(c1, . . . , ck) in GL(2,Z[q±1]), and

(3.4) M+
q (a1, . . . , a2m) :=

(
[a1]q qa1

1 0

)(
[a2]q−1 q−a2

1 0

)
· · ·

(
[a2m−1]q qa2m−1

1 0

)(
[a2m]q−1 q−a2m

1 0

)
as a q-analogue of the matrix M+(a1, a2, . . . , a2m) in GL(2,Z[q±1]).

Using Lemma 3.3 we immediately see that the above matrices Mq(c1, . . . , ck) and M+
q (a1, . . . , a2m)

correspond to the q-deformed continued fractions of the types (2.2) and (2.4). More precisely, one obtains:

Lemma 3.6. (i) Let a1, . . . , a2m be a sequence of integers such that [a1, . . . , a2m]q given by (2.2) is a
well defined rational function in q. One has

[a1, . . . , a2m]q =
R+

S+
,

where R+ and S+ are polynomials in Z[q±1] given by the matrix

M+
q (a1, . . . , a2m) =

(
R+ ∗

S+ ∗

)
.

(ii) Let c1, . . . , ck be a sequence of integers such that Jc1, c2, . . . , ckKq given by (2.4) is a well defined
rational function in q. One has

Jc1, c2, . . . , ckKq =
R
S
,

where R and S are polynomials in Z[q±1] given by the matrix

Mq(c1, c2, . . . , ck) =

(
R ∗

S ∗

)
.
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Remark 3.7. Lemma 3.6 was proved in [MGO20, Prop 4.3] for a particular choice of coefficients ai’s
and ci’s. The more general result of Lemma 3.6 is the key step for the proof of Theorem 4.

3.5. Proof of Theorem 4. Let r
s be a rational defined from sequences of integers a1, . . . , a2m and

c1, . . . , ck by the continued fractions (2.1) and (2.3) respectively, i.e. r
s = [a1, . . . , a2m] = Jc1, c2, . . . , ckK.

We consider the q-deformed continued fractions (2.2) and (2.4) and write

[a1, . . . , a2m]q =
R+

S+
, Jc1, c2, . . . , ckKq =

R
S
.

We want to show [a1, . . . , a2m]q = Jc1, c2, . . . , ckKq.
By Lemma 3.3 we know that the ratio of the first columns of the matrices M+(a1, . . . , a2m) and

M(c1, c2, . . . , ck) defined in (3.2) gives the rational r
s . Since the matrices belong to SL(2,Z) and the

rational r
s is written in the irreducible form, we can write

M+(a1, . . . , a2m) =

(
r u

s v

)
, M(c1, c2, . . . , ck) =

(
r u′

s v′

)
.

Since rv − su = rv′ − su′ = 1 one has u′ = u + nr and v′ = v + ns for some n ∈ Z. This implies the
following relation on the matrices

M(c1, c2, . . . , ck) = M+(a1, . . . , a2m)Rn.

Applying the q-deformation of matrices (3.1) in the above identity and using Lemma 3.6 one gets

[M(c1, c2, . . . , ck)]q = [M+(a1, . . . , a2m)]q[Rn]q(
R ∗

S ∗

)
=

(
R+ ∗

S+ ∗

)(
qn [n]q

0 1

)
(
R ∗

S ∗

)
= qn

(
R+ ∗

S+ ∗

)

One deduces Jc1, c2, . . . , ckKq = R
S = R+

S+ = [a1, . . . , a2m]q. Theorem 4 is proved.

3.6. q-Continuants. Entries in the matrices M+(a1, . . . , a2m) and M(c1, c2, . . . , ck), or equivalently nu-
merators and denominators of the corresponding continued fractions, may be explicitly given with the
help of determinantal expressions known as Euler continuants. The q-analogues of Euler continuants have
been introduced in [MGO20]. We will mainly consider those related to negative continued fraction. Let
us recall the definition and some properties

(3.5) Ek(c1, . . . , ck)q :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[c1]q qc1−1

1 [c2]q qc2−1

. . .
. . .

. . .

1 [ck−1]q qck−1−1

1 [ck]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ci’s are integers, and with convention E0() = 1 and E−1() = 0.
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When the ci’s are positive integers Ek(c1, . . . , ck)q is a polynomial in q with positive integer coefficients.
One has

degEk(c1, . . . , ck)q =

k∑
i=1

ci − k

For any sequence of integers (c1, . . . , ck) one has

(3.6) Mq(c1, . . . , ck) =

(
Ek(c1, . . . , ck) −qck−1Ek−1(c1, . . . , ck−1)

Ek−1(c2, . . . , ck) −qck−1Ek−2(c2, . . . , ck−1)

)
and

Jc1, c2, . . . , ckKq =
Ek(c1, c2, . . . , ck)q
Ek−1(c2, c3, . . . , ck)q

.

3.7. Traces of q-deformed matrices (proof of Theorem 3). The sequence of letters (α1, α2, . . . , αn−1, αn)
is a palindrome if it reads the same backward as forward, i.e. α1 = αn, α2 = αn−1, etc. A polynomial
P ∈ Z[q, q−1] is said to be a palindrome, or to have palindromic coefficients, if its sequence of ordered
coefficients is a palindrome. This means that P is a palindrome if and only if P(q) = qNP(q−1) for some
integer N ∈ Z.

The traces of the q-deformed matrices are palindromes.
The goal of this section is to outline the proof of Theorem 3. The proof is based on three intermediate

results that we formulate as lemmas. Two of them will be established in separate subsections.

Lemma 3.8. For any sequences of integers c1, c2, . . . , ck one has:

TrMq(c1, c2, . . . , ck) = TrMq(ck, ck−1, . . . , c1).

The proof of Lemma 3.8 is postponed to §3.9.

Lemma 3.9. For any sequences of integers c1, c2, . . . , ck the polynomial of Z[q, q−1] given by the trace
TrMq(c1, c2, . . . , ck) is a a palindrome.

Proof. Using matrix transpose in (3.3) one sees that

Mq(ck, ck−1, . . . , c1) = q
∑k

i=1(ci−1)Mq−1(c1, c2, . . . , ck)

Combining this identity with Lemma 3.8 one deduces the equality

TrMq(c1, c2, . . . , ck) = q
∑k

i=1(ci−1)TrMq−1(c1, c2, . . . , ck),

which exactly says that the polynomial TrMq(c1, c2, . . . , ck) is a palindrome. �

Lemma 3.10. For any sequences of positive integers c1, c2, . . . , ck with c1, . . . , ck−1 greater than 2, the
polynomial of Z[q] given by the trace TrMq(c1, c2, . . . , ck) has positive coefficients.

The proof of Lemma 3.10 is postponed to §3.10.

Let M be an element of PSL(2,Z). Since the element [M ]q of PSLq(2,Z) is a class modulo ±qN Id, the
trace of [M ]q is a polynomial defined up to a factor of the form ±qN . Every element of PSL(2,Z) can be
decomposed as M(c1, . . . , ck) for some (non unique) sequence of integers ci’s. Indeed, for the generators
one gets the expressions

R = −M(2, 1, 1), R−1 = −M(1, 1, 2, 1), S = −S−1 = −M(1, 1, 2, 1, 1),

that can be checked by direct computations from (3.3). A decomposition for an arbitrary element can
be obtained as the concatenation of the decompositions of the generators. In addition, it was proved
in [MGO19a] that there exists a decomposition where the coefficients are all greater than two except
perhaps for the first and last ones.
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Lemma 3.11 ([MGO19a, Prop. 7.4]). Every matrix M ∈ PSL(2,Z) can be written as M = M(c1, . . . , ck)
with all ci ≥ 2 except perhaps for c1 or simultaneously c1, c2, and for ck or simultaneously ck−1, ck which
can be equal to one.

The trace of the matrix Mq(c1, . . . , ck) is invariant under a cyclic permutation of the coefficients ci and
one has Mq(1, 1, 1) = −Id. This implies by Lemma 3.11 that the trace of [M ]q is equal, up to a factor
±qN , to the trace of a matrix Mq(c1, . . . , ck) with c1, . . . , ck−1 greater than 2. This implies by Lemma
3.10 that the coefficients of Tr [M ]q are positive integers. Moreover, by Lemma 3.9 we already know that
these coefficients form a palindromic sequence. This will establish Theorem 3.

In addition we formulate the following conjecture.

Conjecture 3.12. For any sequences of integers c1, c2, . . . , ck the polynomial of Z[q, q−1] given by
TrMq(c1, c2, . . . , ck) has unimodal sequence of coefficients.

3.8. Examples: Cohn matrices. We consider the following 2 matrices of SL(2,Z):

A :=

(
2 1
1 1

)
= −M(2, 2, 1, 1), B :=

(
5 2
2 1

)
= −M(3, 2, 2, 1, 1).

These matrices and their products according to Christoffel words provide with all the Markov numbers,
see e.g. [Reu19]. All these matrices are also known as Cohn matrices. Markov numbers appear twice in
the matrices, as the entries in the upper right corner as well as the third of the traces of the matrices.
The q-deformations of the matrices will lead to q-analogues of Markov numbers. We compute the q-
deformations of the first Cohn matrices.

[A]q =

(
q + q2 1
q 1

)
,Tr [A]q = 1 + q + q2

[B]q =

(
q + 2q2 + q3 + q4 1 + q

q + q2 1

)
,Tr [B]q = (1 + q + q2)(1 + q2)

[AB]q =

(
q + 2q2 + 3q3 + 3q4 + 2q5 + q6 1 + q + 2q2 + q3

q + 2q2 + 2q3 + q4 + q5 1 + q + q2

)
,

Tr [AB]q = (1 + q + q2)(1 + q + q2 + q3 + q4)

[A2B]q =

(
q + 3q2 + 5q3 + 6q4 + 7q5 + 5q6 + 3q7 + q8 1 + 2q + 3q2 + 3q3 + 3q4 + q5

q + 3q2 + 4q3 + 4q4 + 4q5 + 2q6 + q7 1 + 2q + 2q2 + 2q3 + q4

)
,

Tr [A2B ]q = (1 + q + q2)(1 + 2q + 2q2 + 3q3 + 2q4 + 2q5 + q6)

[AB2]q =q + 3q2 + 7q3 + 11q4 + 13q5 + 13q6 + 11q7 + 7q8 + 3q9 + q10 1 + 2q + 5q2 + 6q3 + 6q4 + 5q5 + 3q6 + q7

q + 3q2 + 6q3 + 8q4 + 8q5 + 7q6 + 5q7 + 2q8 + q9 1 + 2q + 4q2 + 4q3 + 3q4 + 2q5 + q6

 ,

Tr [AB2]q = (1 + q + q2)(1 + 2q + 4q2 + 5q3 + 5q4 + 5q5 + 4q6 + 2q7 + q8)

[A3B ]q =(
q + 4q2 + 8q3 + 12q4 + 15q5 + 15q6 + 13q7 + 8q8 + 4q9 + q10 1 + 3q + 5q2 + 7q3 + 7q4 + 6q5 + 4q6 + q7

q + 4q2 + 7q3 + 9q4 + 10q5 + 9q6 + 6q7 + 3q8 + q9 1 + 3q + 4q2 + 5q3 + 4q4 + 3q5 + q6

)
,

Tr [A3B ]q = (1 + q + q2)(1 + q2)(1 + 3q + 3q2 + 3q3 + 3q4 + 3q5 + q6)
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We observe that the traces are always divisible by [3]q. Note that the same approach to q-deformations
of Cohn matrices based on the q-rationals was introduced in [Kog20]. Our computations coincide up to
a power of q due to different initial deformations of the matrices A and B.

3.9. Proof of Lemma 3.8. We will proceed by induction. We start with useful relations on the matrices
Mq(c1, c2, . . . , ck) and their traces which allow some reductions on the sequence of coefficients.

Lemma 3.13. For all integers c1, c2, . . . , ck, c and d one has
(i) Mq(c1, . . . , c, 1, d, . . . , ck) = qMq(c1, . . . , c− 1, d− 1, . . . , ck);
(ii) Mq(c1, . . . , c,−1, d, . . . , ck) = −q−2Mq(c1, . . . , c+ 1, d+ 1, . . . , ck);
(iii) TrMq(c1, c2, . . . , ck, 0) = −q−1TrMq(c1 + ck, c2, . . . , ck−1),
(iv) TrMq(0, c1, c2, . . . , ck) = −q−1TrMq(c1 + ck, c2, . . . , ck−1).

Proof. Items (i) and (ii) follow from the identities Mq(c, 1, d) = qMq(c − 1, d − 1) and Mq(c,−1, d) =
−q−2Mq(c + 1, d + 1) that can be checked by direct matrix computations. For item (iii) we use the
decomposition of Lemma 3.4 and write

Mq(c1, c2, . . . , ck, 0) = Rc1
q Sq R

c2
q Sq · · ·Rck

q SqR
0
qSq︸ ︷︷ ︸

−q−1Id

= −q−1Mq(c1, c2, . . . , ck−1)Rck
q .

Taking the trace we obtain

TrMq(c1, c2, . . . , ck, 0) = −q−1Tr (Mq(c1, c2, . . . , ck−1)Rck
q ) = −q−1TrMq(c1 + ck, c2, . . . , ck−1),

which gives (iii). The trace is invariant by cyclic permutation of the factors so TrMq(0, c1, c2, . . . , ck) =
TrMq(c1, c2, . . . , ck, 0) and (iv) also holds. �

We consider the following induction hypothesis:
(H) TrMq(c1, c2, . . . , ck) = TrMq(ck, ck−1, . . . , c1), for any sequence of integers c1, c2, . . . , ck.

Property (H) is clear for k = 2, since Mq(c1, c2) = Mq(c1)Mq(c2).

We now assume that (H) holds up to some fixed k ≥ 2.
Let us fix (c1, c2, . . . , ck) and introduce notation for the entries of the matrices

(3.7) Mq(c1, c2, . . . , ck) =

(
A B
C D

)
, Mq(ck, ck−1, . . . , c1) =

(
Ā B̄
C̄ D̄

)
,

We will need the following preliminary computations:

(3.8)

Mq(c1, c2, . . . , ck, c) =

(
A B
C D

)(
[c] −qc−1
1 0

)
=

(
[c]A+B −qc−1A
[c]C +D −qc−1C

)
Mq(c, ck, ck−1, . . . , c1) =

(
[c] −qc−1
1 0

)(
Ā B̄
C̄ D̄

)
=

(
[c]Ā− qc−1C̄ [c]B̄ − qc−1D̄

Ā B̄

)
where c is any integer and [c] = [c]q.

By (H) one has the following relation between the entries of the matrices (3.7):

A+D = Ā+ D̄.

Step 1. We show that in addition one has the following relation in the matrices (3.7):

(3.9) C − qB = C̄ − qB̄.

Using (3.8) with c = 0 we see that

C − qB = −qTrMq(c1, c2, . . . , ck, 0) and C̄ − qB̄ = −qTrMq(0, ck, ck−1, . . . , c1).
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The equality between these two is obtained using Lemma 3.13 (iii) that allows to reduce the length of
the cycle of coefficients and then by applying (H).

Step 2. We show that in addition one has the following relation in the matrices (3.7):

(3.10) A+B − C = Ā+ B̄ − C̄

Using (3.8) with c = 1 we see that

A+B − C = TrMq(c1, c2, . . . , ck, 1), Ā+ B̄ − C̄ = TrMq(1, ck, ck−1, . . . , c1).

The invariance of the trace by cyclic permutations and Lemma 3.13 (i) give on the one hand

TrMq(c1, c2, . . . , ck, 1) = TrMq(c2, . . . , ck, 1, c1)

= qTrMq(c2, . . . , ck − 1, c1 − 1)

and on the other hand

TrMq(1, ck, ck−1, . . . , c1) = TrMq(c1, 1, ck, ck−1, . . . , c2)

= qTrMq(c1 − 1, ck − 1, ck−1, . . . , c2)

By (H) we obtain (3.10).

Step 3. We want to show:

TrMq(c1, c2, . . . , ck, ck+1) = TrMq(ck+1, ck, ck−1, . . . , c1),(3.11)

We proceed by induction on the integer ck+1 ≥ 0.
The cases ck+1 = 0 and ck+1 = 1 have been established at steps 1 and 2. We then assume that (3.11)

holds for ck+1 = c > 0. By (3.8) this gives us the relation:

(3.12) [c]A+B − qc−1C = [c]Ā+ B̄ − qc−1C̄.

Now we compute

TrMq(c1, c2, . . . , ck, c+ 1) = [c+ 1]A+B − qcC
= q[c]A+A+B − qcC
= (q[c]A+ qB − qcC) + (A+B − C) + (C − qB)

= (q[c]Ā+ qB̄ − qcC̄) + (Ā+ B̄ − C̄) + (C̄ − qB̄)

= [c+ 1]Ā+ B̄ − qcC̄
= TrMq(c+ 1, ck, ck−1, . . . , c1),

where we have used [c+ 1] = q[c] + 1 and all the relations (3.12), (3.10), (3.9).

At this stage we have proved that (3.11) holds for all ck+1 ≥ 0. The case with ck+1 ≤ 0 will be
established the same way. We will replace the relation of Step 2 with the one given by the identity

TrMq(c1, c2, . . . , ck,−1) = TrMq(−1, ck, ck−1, . . . , c1)

that can be obtained with Lemma 3.13 (ii). And then we will proceed at step 3 by a decreasing induction
on the integer ck+1 < 0 using [c− 1] = q−1[c]− q−1.
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3.10. Proof of Lemma 3.10. We will mimic the proof of Lemma 3.8. The induction hypothesis is now
(H’) TrMq(c1, c2, . . . , ck) is a polynomial with positive integer coefficients for any sequence of positive

integers c1, c2, . . . , ck with ci ≥ 2, ∀i < k.
The property (H’) can be checked by direct computations for k = 1 and k = 2.
We proceed as in the proof of Lemma 3.8. At step 1 we will obtain

C − qB ∈ Z≥0[q].

At step 2 we will obtain
A+B − C ∈ Z≥0[q].

At step 3 assuming
TrMq(c1, c2, . . . , ck, c) = [c]A+B − qc−1C ∈ Z≥0[q],

we will be able to deduce with the same computation

TrMq(c1, c2, . . . , ck, c+ 1) = [c+ 1]A+B − qcC ∈ Z≥0[q].

This established (H’) by induction.

Remark 3.14. In the proofs of Lemmas 3.8 and 3.10 we have established properties on the entries of
the matrices Mq(c1, c2, . . . , ck) that translate as follows in terms of q-continuants

Ek(c1, c2, . . . , ck)q − qck−1Ek−2(c2, . . . , ck−1)q = Ek(ck, ck−1, . . . , c1)q − qc1−1Ek−2(ck−1, . . . , c2)q

Ek−1(c2, . . . , ck)q − qckEk−1(c1, . . . , ck−1)q = Ek−1(ck−1, . . . , c1)q − qc1Ek−1(ck, . . . , c2)q

Moreover, these polynomials are palindromes and when c1, c2, . . . , ck are positive integers they have
positive integer coefficients.

4. Quadratic irrationals

4.1. Real quadratic irrational numbers. A real quadratic irrational number is a real number x of

the form x =
r±√p

s , with r ∈ Z, s, p ∈ Z>0 and p is not a square in Z>0. The following assertions are
equivalent:

(a) x is a real quadratic irrational number,
(b) x is a solution of an equation aX2 + bX + c = 0, with a, b, c ∈ Z and b2 − 4ac positive and not a

square,
(c) there exists M ∈ SL(2,Z), with TrM > 2, such that M · x = x,
(d) x has a periodic infinite continued fraction expansion [Lagrange Theorem].
Theorem 2 stated in the Introduction says that the q-deformations that we have introduced behave

nicely with the characterization of quadratic irrationals.

4.2. Proof of Theorem 2. Item (iii) of Theorem 2 is now a corollary of Proposition 3.2 and this
immediately implies Item (i) (except for the palindromicity property of P that will be established in
§4.4) and Item (ii). Item (iv) is a tautology coming from §2.4 and Lagrange theorem (the property (d)
of quadratic irrational recalled in the previous subsection).

4.3. Explicit expressions. As recalled in the first paragraph x is a quadratic irrational number if and
only if its expansion as a continued fraction becomes periodic, i.e. if and only if there exist integers
(b1, . . . , bl), with bi ≥ 2 for i ≥ 2, and integers (c1, . . . , ck) 6= (2, . . . , 2), with ci ≥ 2 for all i, such that

x = Jb1, . . . , bl, c1, . . . , ck, c1, . . . , ck, c1, . . . , ck, . . .K

One writes x = Jb1, . . . , bl, c1, . . . , ckK. When x = Jc1, . . . , ckK one says that x has a purely periodic
expansion.

Lemma 4.1. If x = Jc1, . . . , ckK then [x]q is a fixed point of the matrix Mq(c1, . . . , ck).
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Proof. It is a classical result that if x = Jc1, . . . , ckK then x is a fixed point of the matrix M(c1, . . . , ck).
Applying Proposition 3.2 one gets the q-analogue of this result. �

Proposition 4.2. If x is a fixed point of the matrix M(c1, . . . , ck) then its q-deformation [x]q satisfies
the equation

AX2 − BX + C = 0,

where A, B and C are polynomials in Z[q, q−1] given by q-continuants

A = Ek−1(c2, . . . , ck)q

B = Ek(c1, . . . , ck)q + qck−1Ek−2(c2, . . . , ck−1)q

C = qck−1Ek−1(c1, . . . , ck−1)q

Proof. Expressing that [x]q is a fixed point of Mq(c1, . . . , ck) and using the description (3.6) one gets

[x]q =
[x]qEk(c1, c2, . . . , ck)q − qck−1Ek−1(c1, c2, . . . , ck−1)q

[x]qEk−1(c2, c3, . . . , ck)q − qck−1Ek−2(c2, c3, . . . , ck−1)q
,

which leads to the result. �

Proposition 4.3. If x is a fixed point of the matrix M(c1, . . . , ck), then its q-deformation [x]q has the
following form

[x]q =
R±

√
P

S
,

where P, R and S are polynomials in Z[q, q−1] given by q-continuants

P = (TrMq(c1, . . . , ck))2 − 4q
∑k

i=1(ci−1)

R = Ek(c1, . . . , ck)q + qck−1Ek−2(c2, . . . , ck−1)q

S = 2Ek−1(c2, . . . , ck)q

Proof. The expressions are obtained by solving the equation of Proposition 4.2. For R and S the expres-
sions follow immediately. For P one would obtain the following expression

P =
(
Ek(c1, . . . , ck)q + qck−1Ek−2(c2, . . . , ck−1)q

)2 − 4Ek−1(c2, . . . , ck)qq
ck−1Ek−1(c1, . . . , ck−1)q.

The expression of P may be simplified to (TrMq(c1, . . . , ck))2 − 4q
∑k

i=1(ci−1). Indeed, by (3.6) one sees

TrMq(c1, . . . , ck) = Ek(c1, . . . , ck)q − qck−1Ek−2(c2, . . . , ck−1)q

and then one uses the following relation on the q-continuants

Ek−1(c2, . . . , ck)q · qck−1Ek−1(c1, . . . , ck−1)q − Ek(c1, . . . , ck)q · qck−1Ek−2(c2, . . . , ck−1)q = q
∑k

i=1(ci−1).

which is given by Desnanot-Jacobi identity applied to (3.5). �

4.4. Palindromicity of P (end of proof of Theorem 2). Let x be a quadratic irrational. There exists
a matrix M ∈ PSL(2,Z) such that M · x = x. One can write M = M(c1, . . . , ck) with c1, . . . , ck positive
integers. We obtain [x]q as the fixed point of Mq(c1, . . . , ck). Since the coefficients ci’s are positive, the

entries of Mq(c1, . . . , ck) are polynomials in q and by Proposition 4.3 we obtain [x]q = R±
√
P

S , with

P = (TrMq(c1, . . . , ck))2 − 4q
∑k

i=1(ci−1).

We know by Lemma 3.9 that the polynomial TrMq(c1, . . . , ck) is a palindrome. Moreover its degree is

the same as degEk(c1, . . . , ck)q =
∑k

i=1(ci − 1). Hence, (TrMq(c1, . . . , ck))2 is a palindromic polynomial

of even degree with median coefficient attached to q
∑k

i=1(ci−1). Thus P is still a palindrome.
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4.5. Examples. We study examples of quadratic irrationals with short periodic continued fraction ex-
pansions.

Example 4.4. Let us consider the quadratic irrational with purely periodic expansion with sign − of
period 1:

x = Jc̄K = c−
1

c−
1

c −
1

. . .

=
c+
√
c2 − 4

2
, c ≥ 3.

The q-deformation leads to

[x]q =
[c]q +

√
[c]2q − 4qc−1

2
.

For c = 3 one obtains

[
3 +
√

5

2

]
q

=
1 + q + q2 +

√
1 + 2q − q2 + 2q3 + q4

2
=

1 + q + q2 +
√

(1− q + q2)(1 + 3q + q2)

2

Starting from c ≥ 4 the polynomial [c]2q − 4qc−1 under the radical has positive coefficients.

Example 4.5. Let us consider the quadratic irrational with purely periodic expansion with sign + of
period 1:

x = [a] = a+
1

a+
1

a+
1

. . .

=
a+
√
a2 + 4

2
, a ≥ 1.

Writing [x]q = [a, a]q = [a]q +
qa

[a]q−1 +
q−a

[x]q

one gets

[x]q =
q[a]q + (qa + 1)(q − 1) +

√(
q[a]q + (qa + 1)(q − 1)

)2
+ 4q

2q

=
q[a]q + (qa + 1)(q − 1) +

√
(1− q + q2)([a+ 1]2q − q[2a− 1]q + 2qa)

2q
.
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For a = 1, 2, 3, 4, we obtain respectively[
1 +
√

5

2

]
q

=
q2 + q − 1 +

√
(1− q + q2)(1 + 3q + q2)

2q

[1 +
√

2]q =
q3 + 2q − 1 +

√
(1− q + q2)(1 + q + 4q2 + q3 + q4)

2q[
3 +
√

13

2

]
q

=
q4 + q2 + 2q − 1 +

√
(1− q + q2)(1 + q + 2q2 + 5q3 + 2q4 + q5 + q6)

2q

[2 +
√

5]q =
q5 + q3 + q2 + 2q − 1 +

√
(1− q + q2)(1 + q + 2q2 + 3q3 + 6q4 + 3q5 + 2q6 + q7 + q8)

2q
.

The polynomial under the radical factors out as follows

(1− q + q2)(q2a + q2a−1 + 2q2a−2 + . . .+ (a− 1)qa+1 + (a+ 2)qa + (a− 1)qa−1 + . . .+ 2q2 + q + 1)

and starting from a ≥ 4 it has positive coefficients.

Example 4.6. Let us consider the quadratic irrational with purely periodic expansion with sign + of
period 2:

x = [a, b] = a+
1

b+
1

a+
1

. . .

=
ab+

√
(ab)2 + 4ab

2b
, a, b ≥ 1.

Writing [x]q = [a, b]q = [a]q +
qa

[b]q−1 +
q−b

[x]q

one gets

[x]q =
q[a]q[b]b + qa+b − 1 +

√(
q[a]q[b]b + qa+b − 1

)2
+ 4q[a]q[b]q

2q[b]q

We list below the polynomials under the radical obtained for various values of a and b:

• a = 1, b = 2

(
x =

1 +
√

3

2

)
: q6 + 2q5 + 3q4 + 3q2 + 2q + 1

• a = 1, b = 3

(
x =

3 +
√

21

6

)
: q8 + 2q7 + 3q6 + 4q5 + q4 + 3q2 + 2q+ 1 = (q4 + q3 + 3q2 + q+ 1)(q4 +

q3 − q2 + q + 1)

• a = 1, b = 4

(
x =

1 +
√

2

2

)
: q10 + 2q9 + 3q8 + 4q7 + 5q6 + 2q5 + 5q4 + +4q3 + 3q2 + 2q + 1

• a = 1, b = 5

(
x =

5 + 3
√

5

10

)
: q12+2q11+3q10+4q9++5q8+6q7+3q6+6q5+5q4+4q3+3q2+2q+1 =

(q6 + q5 + q4 + 3q3 + q2 + q + 1)(q6 + q5 + q4 − q3 + q2 + q + 1)
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• a = 2, b = 1
(
x = 1 +

√
3
)

: q6 + 2q5 + 3q4 + 3q2 + 2q + 1

• a = 2, b = 3

(
x =

3 +
√

15

3

)
: q10 + 2q9 + 5q8 + 8q7 + 10q6 + 8q5 + 10q4 + 8q3 + 5q2 + 2q + 1

• a = 2, b = 4

(
x =

2 +
√

6

2

)
: q10 + 4q8 + 8q6 − 2q5 + 8q4 + 4q2 + 1 = (q4 − q3 + 3q2 − q + 1)(q6 +

q5 + 2q4 + 2q2 + q + 1)

• a = 2, b = 5

(
x =

5 +
√

35

5

)
: q14 + 2q13 + 5q12 + 8q11 + 12q10 + 16q9 + 18q8 + 16q7 + 18q6 + 16q5 +

12q4 + 8q3 + 5q2 + 2q + 1

• a = 3, b = 1

(
x =

3 +
√

21

2

)
: q8 + 2q7 + 3q6 + 4q5 + q4 + 4q3 + 3q2 + 2q + 1 = (q4 + q3 − q2 + q +

1)(q4 + q3 + 3q2 + q + 1)

• a = 3, b = 2

(
x =

3 +
√

15

2

)
: q10 + 2q9 + 5q8 + 8q7 + 10q6 + 8q5 + 10q4 + 8q3 + 5q2 + 2q + 1

• a = 3, b = 4

(
x =

3 + 2
√

3

2

)
: q14 + 2q13 + 5q12 + 10q11 + 16q10 + 22q9 + 27q8 + 26q7 + 27q6 + 22q5 +

16q4 + 10q3 + 5q2 + 2q + 1

• a = 3, b = 5

(
x =

15 +
√

285

10

)
: q16 + 2q15 + 5q14 + 10q13 + 16q12 + 24q11 + 31q10 + 36q9 + 35q8 +

36q7 + 31q6 + 24q5 + 16q4 + 10q3 + 5q2 + 2q+ 1 = (q8 + q7 + 2q6 + 3q5 + q4 + 3q3 + 2q2 + q+ 1)(q8 + q7 +
2q6 + 3q5 + 5q4 + 3q3 + 2q2 + q + 1)

Example 4.7. We list below the polynomials under the radical obtained in the q-deformation of
√
n for

the first values of n:
[
√

2]q : q6 + 4q4 − 2q3 + 4q2 + 1 = (q2 − q + 1)(q4 + q3 + 4q2 + q + 1)

[
√

3]q : q6 + 2q5 + 3q4 + 3q2 + 2q + 1

[
√

5]q : q10+2q8+2q7+5q6+5q4+2q3+2q2+1 = (q2−q+1)(q8+q7+2q6+3q5+6q4+3q3+2q2+q+1)

[
√

6]q : q10 + 4q8 + 8q6 − 2q5 + 8q4 + 4q2 + 1 = (q4 − q3 + 3q2 − q + 1)(q6 + q5 + 2q4 + 2q2 + q + 1)

[
√

7]q : q10 + 2q9 + q8 + 4q7 + 6q6 + 6q4 + 4q3 + q2 + 2q + 1,

[
√

8]q : q10 + 2q9 + 3q8 + 4q7 + 5q6 + 2q5 + 5q4 + 4q3 + 3q2 + 2q + 1

[
√

10]q : q14 + 2q12 + 2q11 + 3q10 + 4q9 + 7q8 + ∗q7 + 7q6 + 4q5 + 3q4 + 2q3 + 2q2 + 1 = (q2− q+ 1)(q12 +
q11 + 2q10 + 3q9 + 4q8 + 5q7 + 8q6 + 5q5 + 4q4 + 3q3 + 2q2 + q + 1)
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[
√

11]q : q14 + 2q12 + 4q11 + q10 + 6q9 + 8q8 + 8q6 + 6q5 + q4 + 4q3 + 2q2 + 1

On all examples we compute we observe that the polynomial P of Theorem 2 always factors out with
a polynomial which has positive coefficients.
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