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We establish a link between the new theory of q-deformed rational numbers and the classical Burau
representation of the braid group B3. We apply this link to the open problem of classification of faithful
complex specializations of this representation. As a result we provide an answer to this problem in
terms of the singular set of the q-rationals and prove the faithfulness of the Burau representation
specialized at complex t ∈ C∗ outside the annulus 3 − 2

√
2 ≤ |t| ≤ 3 + 2

√
2.

1 Introduction
The braid groups are the most remarkable groups from topological point of view naturally appearing
in the theory of knots, mapping class groups and configuration spaces; see [8]. They were explicitly
introduced by Emil Artin in 1925 [3], who denoted their n-strand versions by Bn. The (Artin) braid group
Bn is generated by n − 1 elements σ1, . . . , σn−1 with braid relations

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n − 1,

and σiσj = σjσi when |i − j| > 1. Since then the braid groups have been extensively studied both by
topologists and algebraists.

One of the first important results in this direction was found by Werner Burau in 1936 [10], who
introduced what is now known as (reduced) Burau representation ρn : Bn → GL(n − 1,Z[t, t−1]). In the
simplest case n = 3 the Burau representation ρ3 : B3 → GL(2,Z[t, t−1]) is defined by

ρ3 : σ1 �→
(−t 1

0 1

)
, σ2 �→

(
1 0

t −t

)
, (1)

where t is a formal parameter. One can check that the braid relation σ1σ2σ1 = σ2σ1σ2 is satisfied in this
case. Burau used this representation to introduce a knot invariant, which turned out to be essentially
the famous Alexander polynomial [1].

It is known after [2, 23] that ρ3 is faithful, meaning that its kernel is trivial. Three different proofs of
this fact can be found in [9]. Note that for n ≥ 5 the Burau representation is known to be non-faithful
[5, 22] and that for n = 4 the question is still open.
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2 | S. Morier-Genoud et al.

In this paper we address another open problem (which we call Burau specialization problem), which was
flagged in a recent paper by Bharathram and Birman (see [9, Open Problem 1 in Section 7]):

“At which complex specializations of t is the Burau representation ρ3 faithful?”
Here a specialization of the Burau representation ρ3 is the representation

ρt
3 : B3 → GL(2,C),

which is defined by (1), but t is now a non-zero complex number: t ∈ C∗ = C \ {0}.
In the real case with t ∈ R some interesting results in this direction were found by Scherich in [33],

who used the hyperbolic geometry to prove, in particular, that ρt
3 is faithful when t < 0, t 	= −1, and

outside the interval 3−√
5

2 ≤ t ≤ 3+√
5

2 . Note that when t = −1 the matrices (1) specialize to

R :=
(

1 1

0 1

)
, L−1 :=

(
1 0

−1 1

)
,

generating the whole group SL(2,Z). Recall also that the quotient of the braid group B3 by its centre
Z (generated by z := (σ1σ2)

3) is the classical modular group PSL(2,Z) = SL(2,Z)/ ± Id, so that the
specialization of the Burau representation ρ3 at t = −1 is not faithful, having Z in its kernel.

The aim of our work is to establish the link of the Burau specialization problem with the theory
of q-deformed rational numbers (or q-rationals, for short), which was recently developed in [26]. The
q-deformation of a positive rational r

s has the form

[ r
s

]
q

= R(q)

S(q)
,

where R(q), S(q) are certain Laurent polynomials in q with positive integer coefficients (see the details
in the next section). The zeros of these polynomials have been studied in [19].

Define the singular set of q-rationals � ⊂ C∗ as the union of complex poles of all q-rationals and
consider the extended singular set �∗ := � ∪ {1}. Both sets � and �∗ consist of certain algebraic integers
and are invariant under the involution q → q−1.

The following theorem gives an answer to the Burau specialization problem in terms of q-rationals.

Theorem 1. The Burau representation ρ3 specialized at t0 ∈ C∗ is faithful if and only if −t0 /∈ �∗.

A similar claim in terms of zeros of the Moody polynomials [25] can be found in [9], but our statement
allows us to use the theory of q-rationals for which information about the set � is available. In particular,
from the results of [19] we deduce our second main result.

Theorem 2. The specialized Burau representation ρ
t0
3 is faithful for all t0 ∈ C∗ outside the

annulus 3 − 2
√

2 ≤ |t0| ≤ 3 + 2
√

2.

We believe that we can reduce the annulus in Theorem 2 as follows.

Conjecture 3. The specialized Burau representation ρ
t0
3 is faithful for all t0 ∈ C∗ outside the

annulus 3−√
5

2 ≤ |t| ≤ 3+√
5

2 .

Modulo Theorem 1 this conjecture is a weaker version of the conjecture from [19], which claims, in
particular, that �∗ lies within the annulus 3−√

5
2 ≤ |q| ≤ 3+√

5
2 .

Note that the bounds 3−√
5

2 and 3+√
5

2 were also found in [33] in the real case, which confirms this
conjecture for t0 ∈ R∗.

Our approach is based on the following important observation. Consider the natural projective
version of the Burau representation

ρ̂3 : B3 → PGL(2,Z[t, t−1]) := GL(2,Z[t, t−1])/{±tnId, n ∈ Z}. (2)

Note that the centre Z ⊂ B3 is in the kernel of ρ̂3 since ρ3((σ1σ2)
3) = t3Id. This means that image ρ̂3(B3)

is isomorphic to the modular group PSL(2,Z).
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Burau Representation of Braid Groups and q-Rationals | 3

Our key observation is that this image coincides with the q-deformation PSL(2,Z)q of the modular
group PSL(2,Z) introduced in [26] (see also [18]) if we identify t with −q. Indeed, PSL(2,Z)q is generated
by

(
q 1

0 1

)
,

(
1 0

1 q−1

)
,

where q is a formal parameter, which are projectively equivalent to ρ3(σ1) and ρ3(σ2)
−1 respectively when

q = −t.
We should note that the theory of q-rationals was initially motivated by connections to cluster

algebras and rapidly led to further developments in various directions: combinatorics of posets, knot
invariants, Markov numbers and Diophantine analysis, enumerative geometry, triangulated categories
and homological algebra, quantum calculus (see more on this in the review [29]). It is interesting that
although the knot theory was already discussed in this connection, as far as we know, no relation with
the Burau representation ρ3 was pointed out so far.

2 q-Rationals and q-Deformed Modular Group
In this section we give the precise and adapted for computations definition of the q-rationals, and recall
their main properties, which are necessary for the proof of the main result. Among several equivalent
definitions of q-rationals we will use the one based on PSL(2,Z)-invariance (or on B3-invariance).

2.1 The main definition
Consider the set Q ∪ {∞} rational numbers, extended by one additional element ∞, which will always
be represented by the quotient 1

0 . The group SL(2,Z) of matrices with integer coefficients

M =
(

r v
s u

)
, r, v, s, u ∈ Z, ru − vs = 1,

acts on Q ∪ {∞} by linear-fractional transformations:

M · x = rx + v
sx + u

. (3)

This action is homogeneous and effective for the modular group PSL(2,Z).
Following [26], consider the following matrices of GL(2,Z[q, q−1]):

Rq :=
(

q 1

0 1

)
, Lq :=

(
1 0

1 q−1

)
. (4)

They generate a subgroup PSL(2,Z)q in the group

PGL(2,Z[q, q−1]) = GL(2,Z[q, q−1])/{±qnId},

which is isomorphic to PSL(2,Z) and thus can be considered as q-deformed modular group [18, 26].
Evaluating at q = 1 one recovers R = Rq|q=1 and L = Lq|q=1 the standard generators of the modular
group SL(2,Z). This allows one to consider q-analogs of matrices Mq for every M ∈ SL(2,Z).

We have a natural action of PSL(2,Z)q on the space Z(q) of rational functions in q with integer
coefficients, which can be considered as q-deformed version of the standard linear-fractional action
of the modular group. More precisely, for every M ∈ SL(2,Z), written as a monomial in R and L, let Mq

be a matrix in GL(2,Z[q, q−1]) given by the same monomial in Rq and Lq. If f (q) ∈ Z(q), then the linear-
fractional action

f (q) �→ Mq · f (q) (5)
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4 | S. Morier-Genoud et al.

is a well-defined action of PSL(2,Z). In other words, Mq does depend on the choice of the monomial in
R and L presenting M, but the result of (5) does not.

Definition 1. The set of q-rationals is the set of rational functions in the orbit of any point from
the set {0, 1, ∞} (all of them remain independent of q after deformation) for the
linear-fractional action (5).

Example 2. Every rational is an image of 0 under the action (3). For instance,

1 = R · 0, 2 = R2 · 0,
1
2

= LR · 0,
2
3

= LR2 · 0 .

The element of SL(2,Z) corresponding to a rational is determined by its continued fraction
expansion. Therefore, one obtains

Rq · 0 = 1, RqRq · 0 = 1 + q, LqRq · 0 = q
1 + q

, LqRqRq · 0 = q + q2

1 + q + q2
, . . .

as the q-analogs of 1, 2, 1
2 , 2

3 , respectively.

Remark 3. The notion of q-rationals extends that of q-integers:

[n]q := 1 + q + q2 + . . . + qn−1

[−n]q := −q−1 − q−2 . . . − q−n,

that goes back to the works of Euler and Gauss. These q-integers and the corresponding
q-binomial coefficients are essential in quantum algebra and mathematical physics. They are
also the key ingredients for the theory of q-analogs in combinatorics. Most classical
sequences of integers have interesting q-analogs often arising as generating functions.

2.2 Matrices of continued fractions
We use the following notation for the entries and the decomposition in terms of generators of a matrix
M in SL(2,Z)

M =
(

r v
s u

)
= Ra1 La2 · · · Ra2m−1 La2m =: M+(a1, . . . , a2m), (6)

and the following for the corresponding q-deformed matrices in GL(2,Z[q, q−1]) :

Mq =
(
R V
S U

)
= Ra1

q La2
q · · · Ra2m−1

q La2m
q =: M+

q (a1, . . . , a2m), (7)

where ai and r, s, t, u are integers, and R,S,V ,U are Laurent polynomials in q. This notation is very
convenient for explicit computations, taking into account that the coefficients ai are those of the
continued fraction expansion r

s = [a1, . . . , a2m].
The following definition is equivalent to Definition 1.

Definition 4 ([26]). If r
s is a rational appearing in the first column of a matrix M we define its

q-analog as the rational function given by

[ r
s

]
q

:= R(q)

S(q)
, (8)

where R(q) and S(q) are the entries in the first column of the corresponding matrix Mq.
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Example 5. From

M+(1, 1) =
(

2 1

1 1

)
, M+

q (1, 1) =
(

1 + q q−1

1 q−1

)
,

one gets [2]q = 1 + q, which is the standard quantum integer.
From

M+(0, 2) =
(

1 0

2 1

)
, M+

q (0, 2) =
(

1 0

1 + q−1 q−2

)
,

one gets
[ 1

2

]
q = q

1+q .
From

M+(0, 1, 1, 1) =
(

2 1

3 2

)
, M+

q (0, 1, 1, 1) =
(

1 + q q−1

q + 1 + q−1 q−1 + q−2

)
,

one gets
[ 2

3

]
q = q+q2

1+q+q2 .

2.3 Some properties of the polynomials R and S
Let as before

[ r
s

]
q = R(q)

S(q)
. We collect some of the known properties of the polynomials R(q) and S(q)

that will be useful for the proof. We were not able to find these properties in the literature about the
Burau representation.

Suppose first that r
s ≥ 1.

Proposition 6 (Positivity [26, Prop. 1.3]). The polynomials R and S have positive integer
coefficients.

Note that this positivity statement can be strengthened, cf. Theorem 2 of [26].

Proposition 7 (Reflection and mirror [18, Prop 2.8]). One has

[ s
r

]
q

= S(q−1)

R(q−1)
and

[
− r

s

]
q

= − R(q−1)

qS(q−1)
.

Proposition 8 (Roots of polynomials [19, Section 5.1]). The polynomial R and S have no roots
inside the punctured disc with radius 3 − 2

√
2.

Proposition 8 can be extended for an arbitrary rational r
s < 1 using PSL(2,Z)-action. Proposition 7

implies that the polynomials R and S have no roots for |q| ≥ 1
3−2

√
2

= 3 + 2
√

2. Therefore, one gets the
following corollary.

Proposition 9. For every rational r
s the roots of the polynomials R and S belong to the open

annulus {3 − 2
√

2 < |t| < 3 + 2
√

2} ⊂ C∗.

3 Proof of the Main Theorems
The following important observation links the theory of q-rationals with Burau representation.

Proposition 10. The q-deformed action of the modular group (5) coincides with the projective
version of the Burau representation (2) with q = −t.

Proof. Indeed, for t = −q the matrices Rq and Lq given by (4) coincide with ρ3(σ1) and ρ3(σ2)
−1. �
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6 | S. Morier-Genoud et al.

This means that from the point of view of Burau representation, q-rationals are the quotients of the
elements in the columns of the matrices ρ3(β), for every β ∈ B3, but the sign of the formal parameter is
reversed. More precisely, if the Burau representation written in the matrix form

ρ3(β) =
(
R(t) V(t)

S(t) U(t)

)
, (9)

then R(q)

S(q)
and V(q)

U(q)
with q = −t are q-rationals.

Example 11. Take β = σ1σ
−1
2 σ1σ

−1
2 , this braid corresponds to the continued fraction

[1, 1, 1, 1] = 5
3 . As explained in the beginning of Section 2.2, the rational 5

3 then appears as the
quotient of the elements in the first column of the matrix RLRL. The Burau representation
gives the matrix

ρ3(β) = t−2

(−t + t2 − 2t3 + t4 1 − t + t2

−t + t2 − t3 1 − t

)
= q−2

(
q + q2 + 2q3 + q4 1 + q + q2

q + q2 + q3 1 + q

)
. (10)

so that the rational function 1+q+2q2+q3

1+q+q2 is the q-deformed 5
3 . Similarly, 1+q+q2

1+q =:
[ 3

2

]
q in the

second column.

Now we can use the results of [19] about the roots of the polynomials R,S,V and U to prove our
main results.

We start with the following lemma.

Lemma 12. Assume that in (9) matrix element S(t) ≡ 0, then β belongs to the subgroup G0 ⊂ B3

generated by σ1 and (σ1σ2)
3.

Proof. Specialization at t = −1 gives a matrix of the triangular form

ρ−1
3 (β) =

(±1 ∗
0 ±1

)
∈ PSL(2,Z),

which is the same as ρ−1
3 (σ k

1 ) for some k ∈ Z. Since the kernel of this specialization is the centre Z of B3

generated by (σ1σ2)
3, we have the claim. �

Note the converse of the lemma is also obviously true.
Consider now the set � ⊂ C∗ defined as the union of the poles of all q-rationals

[ r
s

]
q = R(q)

S(q)
, r

s ∈ Q.
Note that since

[
1
n

]
q

= qn−1(1 − q)

1 − qn

� contains all roots of unity except 1 itself. Recall that �∗ = � ∪ {1} is the extended set with added
special point q = 1.

We are ready to prove Theorem 1, that is, to prove that the Burau representation ρ3 specialized at
t0 ∈ C∗ is faithful if and only if −t0 /∈ �∗.

Proof. Let us first prove that if −t0 /∈ �∗ then ρ
t0
3 is faithful. Given a braid β ∈ B3 we need to show that

ρ
t0
3 (β) = Id implies that β is a trivial braid.

Assume that ρ
t0
3 (β) = Id. Proposition 10 implies that the polynomials S and V in the matrix (9) vanish

identically: S(t) = V(t) ≡ 0, since t0 is not a root of these polynomials. Therefore,

ρ3(β) =
(
R(t) 0

0 U(t)

)
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad318/7525791 by M

athem
atisches Forschungsinstitut O

berw
olfach gG

m
bH

 user on 17 January 2024



Burau Representation of Braid Groups and q-Rationals | 7

We know that ρ3(β) evaluated at t0 = −1 belongs to SL(2,Z). Proposition 6 then implies that the
polynomials R and U are monomials, that is, R(t) = ±t� and U(t) = ±tk, for some integers � and k.
Since, by assumption t0 is not a root of 1 or −1, ρ

t0
3 (β) = Id implies that the polynomials R and U are

constant equal to 1. Finally one has ρ3(β) = Id and therefore β is a trivial braid because the Burau
representation ρ3 is faithful.

To prove the converse statement we use some ideas from [33]. We need to prove that if −t0 ∈ �∗ then
ρ

t0
3 is unfaithful. First of all, we know that this is true if t0 = −1. Assume now that −t0 ∈ � and consider

a braid β0 ∈ B3 such that the corresponding element S(t) in (9) is not identically zero, but S(t0) = 0.
Assume that the specialization ρ

t0
3 is faithful and consider the subgroup G of B3 generated by σ1 and

β0. Since both ρ
t0
3 (σ1) and ρ

t0
3 (β0) are triangular, G must be solvable, but not abelian (since β0 does not

commute with σ1 because S(t) 	≡ 0).
Let us prove that this is impossible in our case. (We are very grateful to A.Yu. Olshanskiy for the help

with this proof.) Introducing x = σ1σ2 and y = σ2σ1σ2 we can rewrite the generating relation as y2 = x3.
The centre Z is generated by x3 = y2, so the quotient B3/Z = Z2 ∗ Z3 is the free product of two cyclic
groups of order 2 and 3 respectively (which is also isomorphic to the modular group PSL(2,Z)). Consider
the image φ(G) ⊂ Z2 ∗Z3 under the homomorphism φ : B3 → B3/Z. From Kurosh subgroup theorem [16]
it follows that any solvable subgroup of Z2 ∗ Z3 is either cyclic, or infinite dihedral group D∞ = Z2 � Z,
which is isomorphic to Z2 ∗ Z2 (generated by the images of some conjugates of y). In the first case G is
abelian. We claim that the second case is not possible as well. Indeed, if G = D∞, then it must belong to
the kernel of the homomorphism ψ : B3 → Z3 sending y → 0 and x → 1 (in the additive notation). Since
ψ(σ1) = ψ(x2y−1) = 2 	= 0, we have a contradiction.

Theorem 1 is proved. �

Now Theorem 2 is an immediate corollary of Theorem 1 and Proposition 9. Note also that Proposi-
tion 6 implies the result of [33] about faithfulness of ρt

3 for negative t 	= −1.

4 Discussion
Perhaps the most interesting question now is to understand the number-theoretic properties of the
algebraic integers from the set �. The following results from the theory of q-rationals can give more
information in this direction.

• The sequences of coefficients in the polynomials written in the parameter q are unimodal. This
fact, which was conjectured in [26] and studied in [24], was eventually proved in [28].

This implies, in particular, that if an algebraic integer α ∈ C has a conjugate, which is real and positive,
then α cannot be part of � (and hence, corresponding specialization of the Burau representation at
t0 = −α is faithful).

• The trace of the matrix (9) is a palindromic polynomial (in variable q) [18]. We wonder if this is
related to the invariant Hermitian form of [34].

• The “stabilization phenomenon” of [27] is one of the main properties of q-rationals. Suppose that
a sequence of rationals, rm

sm
, converges to an irrational number x. Then the Taylor series of the rational

functions Rm(q)

Sm(q)
stabilizes, as m grows. This allows to define a q-deformation [x]q as Taylor series with

integer coefficients. The study of the radii of convergence of these series is closely related to the study
of the singular set �. In particular if ϕ = 1+√

5
2 is the golden ratio, then the radius of convergence of the

corresponding series [ϕ]q is R(ϕ) = 3−√
5

2 (see [19]).

4.1 The conjectural tight limits of faithfulness
The annulus in Theorem 2 can be reduced to 3−√

5
2 ≤ |t| ≤ 3+√

5
2 modulo the following conjecture.

Conjecture 2 ([19]). For every real x > 0 the radius of convergence R(x) of the series [x]q satisfies
the inequality

R(x) ≥ R(ϕ) = 3 − √
5

2

and the equality holding only for x, which are PSL(2,Z)-equivalent to ϕ.
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8 | S. Morier-Genoud et al.

Fig. 1.. Two different closures of σ1σ−1
2 σ1σ−1

2

Since for a q-rational
[ r

s

]
q = R(q)

S(q)
the radius of convergence equals the minimal modulus of the

roots of the denominator S(q), modulo this conjecture we can claim that �∗ lies within the annulus
3−√

5
2 ≤ |q| ≤ 3+√

5
2 and therefore the specialized Burau representation ρt

3 is faithful for all t outside the

annulus 3−√
5

2 ≤ |t| ≤ 3+√
5

2 .
In some special cases Conjecture 2 was proved in [19, 31]. Computer experiments show that the

bounds 3±√
5

2 for the annulus in the conjectures are optimal. In particular, the polynomials in the entries

of the matrices M+
q (1, 1, . . . , 1) = (RqLq)

m have roots closer and closer to the circle |t| = 3−√
5

2 , as m grows.

4.2 Braids, rational knots, and their invariants
There exist two different ways to associate a knot (or a link) to β ∈ B3: one is by the standard closure
shown on the left of Figure 1 and the second one by the closure (used by Conway in [11]), which is shown
on the right of this Figure. In the concrete shown case of β = σ1σ

−1
2 σ1σ

−1
2 these two closures lead to the

same knot (which is the famous figure-eight knot), but in general this is not the case.
To obtain the rational (or two-bridge) knots (see, e.g., Lickorish [21]) from the braids in B3 one should

use the second closure (to get them using the standard closure one may need four-strand braid group
B4).

As we have already mentioned in the Introduction, the Alexander polynomial of the link L = L(β)

related to a braid β ∈ Bn via the standard closure can be given (up to a unit in Z[t, t−1]) by the Burau
formula [10]

�L(t) = 1 − t
1 − tn

det(I − ρn(β)).

In particular, using formula (10) we get the Alexander polynomial for the figure-eight knot:

�L(t) = −t−1 + 3 − t.

No general formula in terms of Burau representation is known for the Jones polynomials. However, as
it was noticed in [26], for the rational knots the (normalized) Jones polynomial of the knot corresponding
to a fraction r

s can be expressed using the polynomials R(q) and S(q) from the q-version of r
s in (8) via

J r
s
(q) = qR(q) + (1 − q)S(q) (11)

(see Appendix A in [26]). In particular, in our case of figure-eight knot we have r = 5, s = 3 (or,
equivalently, in Conway’s convention r = 5, s = 2) and thus from (10) the Jones polynomial is

J 5
3
(q) = q−2[q(1 + q + 2q2 + q3) + (1 − q)(1 + q + q2)] = q−2 + q−1 + 1 + q + q2

in agreement with [21].
The proof of formula (11) is based on the results of the paper [20] by Lee and Schiffler, using the

combinatorics of snake graphs and cluster algebras. Alternatively, in terms of the so-called left version
of the q-deformed rationals

[ r
s

]�

q
= R�(q)

S�(q)
,
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which was observed in [27] (cf. Remark 2.3) and introduced and studied by Bapat et al [4], one can
express the normalized Jones polynomial as J r

s
(q) = qmR�(q−1) with some m ∈ Z (see Appendix A2 in [4]

and [32]).
It would be interesting to see if all this can be explained using Burau representation. In this relation

we would like to note that the role of the left q-rationals became more clear after the recent preprint
[35], where an infinitesimal analogue of the Burau representation is investigated.

4.3 Other representations and specializations
The Burau representation ρn fails to be faithful for n ≥ 5, but there is another homological represen-
tation of the braid group Bn, first introduced in [17] and now known as Lawrence–Krammer–Bigelow
representation, which is proved to be faithful for all n [6, 15]. The work of Lawrence [17] was initially
motivated by the desire to better understand the significance of the Jones polynomial for links [12].
Burau representation corresponds to the first non-trivial case m = 1 in her construction. The general
case is related also to the monodromy representations for the Knizhnik–Zamolodchikov equations

κ
∂ψ

∂zi
−

∑
k 	=i

�ik

zi − zk
ψ(z1, . . . , zn) = 0, i = 1, . . . , n,

which were studied by Tsuchiya and Kanie [36] and Kohno [14].
This makes an important link of the braid groups and knots with the theory of Yang–Baxter equations

and quantum integrable systems (see more on this in [13, 37]). There is a well-known representation
[12] of the braid group in the Temperley–Lieb algebra, which appeared in a similar relation in statistical
mechanics. Bigelow [7] proved the equivalence of the faithfulness problem for Burau, Jones and
Temperley–Lieb representations in the most interesting case n = 4. It is known that the Temperley–Lieb
representation of the braid group B3 is faithful [30], but the same question about its specializations
seems to be open. It would be interesting to apply our approach to this problem as well.

Finally, we would like to mention that the specializations of Burau representations of Bn at the roots
of unity naturally appear in algebraic geometry as the homological monodromy in the moduli space of
algebraic curves

yd = xn + a1xn−1 + · · · + a0.

This observation goes back to the work of Arnold [2], who considered the hyperelliptic case d =
2, and was explicitly stated by Magnus and Peluso [23] in the general case. A more recent important
development in this direction is due to Venkataramana [38], who proved the arithmeticity of the image
of the Burau representation ρn specialized at the d-th roots of unity when n ≥ 2d + 1.
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