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Séverine Leidwanger1 and Sophie Morier-Genoud2

1Institut Mathématiques de Jussieu, Théorie des groupes, Université
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Marie Curie Paris VI, 4 place Jussieu, case 247, 75252 Paris Cedex 05,
France

Correspondence to be sent to: e-mail: sophiemg@math.jussieu.fr

We construct two superalgebras associated to a punctured Riemann surface. One of

them is a Lie superalgebra of the Krichever–Novikov type, the other one is a Jordan

superalgebra. The constructed algebras are related in several ways (algebraic, geomet-

ric, representation theoretic, etc.). In particular, the Lie superalgebra is the algebra of

derivations of the Jordan superalgebra.

1 Introduction

In 1987, Krichever and Novikov [12–14] introduced a family of Lie algebras gen-

eralizing the Virasoro algebra. Given a Riemann surface of arbitrary genus, the

Krichever–Novikov algebra is the algebra of meromorphic vector fields on the surface

which are holomorphic outside two distinguish fixed points. This algebra admits non-

trivial central extensions. The case where the Riemann surface is the sphere corre-

sponds exactly to the Virasoro algebra. Later, this definition has been extended to the
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2 S. Leidwanger and S. Morier-Genoud

case of Lie superalgebras [1–4]. Lie algebras associated to Riemann surfaces punctured

by more than two points were studied in [6, 23, 24].

In this paper, we study two natural superalgebras, LKN and JKN, coming from

punctured Riemann surfaces. One of them, LKN, has a structure of a Lie superalgebra.

It is constructed from the natural action of the algebra of meromorphic vector fields on

the space of half densities. The other one, JKN, is a commutative superalgebra, which

enters the class of Jordan superalgebra. It is constructed from the natural action of the

algebra of meromorphic functions on the space of half densities.

One of the main notion used in the paper is that of Lie antialgebras, introduced

in 2007 by Ovsienko [22]. This class of algebras is a subclass of Jordan superalgebras.

Ovsienko explained how one can associate a Lie superalgebra to a Lie antialgebra (the

process is different from that of Koecher–Kantor–Tits) and how the representations of

these algebras are related.

It turns out that the algebra JKN that we introduce is a Lie antialgebra. Our first

goal is to understand the relation between the algebras LKN and JKN. Theorem 3.4 estab-

lishes two different links between the two algebras: the first link within the framework

of Lie antialgebras, and a second geometric link in terms of algebras of derivations. The

next main result of the paper, Theorem 3.6, provides a classification of representations

of JKN araising from tensor densities modules of LKN.

Our running example is the case of the Riemann surface of genus 0 with three

punctures. It turns out that the algebra JKN that we obtain in this case is similar to

those considered in [26, 27] as a new type of infinite-dimensional Jordan superalgebra.

Section 4 and Proposition 4.5 give an algebraic construction of the algebra JKN leading

to a connection with the work of [26, 27].

2 Preliminary

In this section, we recall briefly the main notions related to Lie superalgebras and

Jordan superalgebras. We refer to [17] (and the references therein) for more general the-

ory of these structures. We also recall the definitions concerning Lie antialgebras [22].

The algebras are considered over the field of complex numbers C (although most

of the notions make sense over any field of characteristic not 2). For a homogeneous ele-

ment v in a Z2-graded vector space V = V0 ⊕ V1 we denote v̄ the degree of v, that is, v̄ = i

for v ∈ Vi. In End(V0 ⊕ V1), the even elements and odd elements, are those morphisms

belonging to End(V0) ⊕ End(V1) and Hom(V0, V1) ⊕ Hom(V1, V0), respectively.
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Superalgebras Associated to Riemann Surfaces 3

2.1 Lie superalgebras

A Lie superalgebra is a vector space L = L0 ⊕ L1 equipped with a bilinear operation [, ] :

L × L → L, called Lie superbracket, satisfying

(SL1) skewsymmetry: [x, y] = −(−1)x̄ȳ [y, x],

(SL2) super Jacoby identity:

(−1)x̄z̄[[x, y], z] + (−1)ȳx̄[[y, z], x] + (−1)z̄ȳ[[z, x], y] = 0

for all x, y, and z homogeneous elements in L.

Commutator. Given any associative superalgebra A, a natural Lie superbracket on A is

given by the commutator [, ] defined by

[A, B] = AB − (−1)ĀB̄ B A

for homogeneous elements A, B ∈ A and extended by bilinearity on A × A.

Representations of Lie superalgebras. A representation of a Lie superalgebra (L, [, ]) is

a superspace V = V0 ⊕ V1 together with a linear map ρ : L → End(V), satisfying

ρ([x, y]) = [ρ(x), ρ(y)],

for all x, y∈ L.

2.2 Jordan superalgebras

A superalgebra (J =J0 ⊕ J1, · ) is a Jordan superalgebra if the product satisfies

(SJ1) supercommutativity: a · b = (−1)āb̄ b · a,

(SJ2) super Jordan identity:

(a · b) · (c · d) + (−1)b̄c̄ (a · c) · (b · d) + (−1)(b̄+c̄)d̄(a · d) · (b · c)

= ((a · b) · c) · d+ (−1)(b̄+c̄)d̄+b̄c̄((a · d) · c) · b + (−1)(b̄+c̄+d̄)ā+c̄d̄((b · d) · c) · a,

for all a, b, c, and d homogeneous elements in J .
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4 S. Leidwanger and S. Morier-Genoud

Anticommutator. Given any associative superalgebra A, a natural Jordan product is

given by the anticommutator [ , ]+ defined by

[A, B]+ = AB + (−1)ĀB̄ B A

for homogeneous elements A, B ∈ A and extended by bilinearity on A × A.

Representations of Jordan superalgebras. A representation of a Jordan superalgebra

(J , · ) is a a superspace V = V0 ⊕ V1 together with a linear map ρ : J → End(V), satisfying

ρ(a · b) = [ρ(a), ρ(b)]+,

for all a, b ∈J . A faithful embedding of a Jordan algebra into an associative algebra

equipped with the anticommutator is also called a specialization.

2.3 Lie antialgebras

Lie antialgebras form a subclass of Jordan superalgebras in which the algebras satisfy

cubic identities (instead of the quartic identities defining Jordan algebras). They were

introduced in a geometric setting in [22]. However, the defining axioms of Lie antialge-

bras already appeared in [10, 19]. Thanks to the “simplified” cubic identities, one can

develop new objects and notions associated to these particular Jordan algebras (a spe-

cific representation theory [16, 21], cohomology theory [15]). The most important object

here will be the adjoint Lie superalgebra constructed in [22], which is different from that

obtained by applying the Koecher–Kantor–Tits process.

Definition. A Lie antialgebra is a superalgebra A=A0 ⊕ A1 with a supercommutative

product satisfying the following cubic identities:

(LA0) associativity of A0

x1 · (x2 · x3) = (x1 · x2) · x3,

for all x1, x2, x3 ∈A0,

(LA1) half-action

x1 · (x2 · y) = 1
2 (x1 · x2) · y,

for all x1, x2 ∈A0 and y∈A1,
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Superalgebras Associated to Riemann Surfaces 5

(LA2) Leibniz identity

x · (y1 · y2) = (x · y1) · y2 + y1 · (x · y2),

for all x ∈A0 and y1, y2 ∈A1,

(LA3) odd Jacobi identity

y1 · (y2 · y3) + y2 · (y3 · y1) + y3 · (y1 · y2) = 0,

for all y1, y2, y3 ∈A1. �

The fact that the axioms of Lie antialgebras imply those of Jordan superalgebras

can be found in [19] (see also [16] for more details).

Adjoint Lie superalgebra. Given a Lie antialgebra A, the adjoint Lie superalgebra

denoted by ovs(A) is defined as follows. As a vector space ovs(A) = ovs(A)0 ⊕ ovs(A)1,

where

ovs(A)1 :=A1, ovs(A)0 :=A1 ⊗ A1/I

and I is the ideal generated by

{a ⊗ b − b ⊗ a, ax ⊗ b − a ⊗ bx | a, b ∈A1, x ∈A0}.

We denote by a � b the image of a ⊗ b in ovs(A)0. Therefore, we have the following useful

relations in ovs(A)0:

a � b = b � a,

ax � b = a � bx = b � ax = bx � a, a, b ∈A1, x ∈A0.

The Lie superbracket on ovs(A) is given by

[a, b] = a � b,

[a � b, c] = −[c, a � b] = a(bc) + b(ac), (2.1)

[a � b, c � d] = 2a(bc) � d+ 2b(ad) � c,

where a, b, c, and d are elements of ovs(A)1 =A1.
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6 S. Leidwanger and S. Morier-Genoud

Representations of Lie antialgebras. Since Lie antialgebras are particular Jordan

superalgebras, we will be interested in particular Jordan representations. We call

LA-representation of the Lie antialgebra (A, · ) any Jordan representation (ρ, V)

satisfying the additional condition

ρ(a)ρ(b) = ρ(b)ρ(a) for all even elements a, b ∈A0.

An important feature of LA-representations is that they can be extended to represen-

tations of the adjoint Lie superalgebra, [22]. The converse is not true but some “good

representations” of the Lie superalgebra give rise to LA-representations, see [16] and

also Theorem 3.6.

Example 2.1. (a) The first example of the finite-dimensional Lie antialgebra is a tiny

Kaplansky superalgebra, often denoted K3 (In the first version of [22] this algebra was

denoted asl2; this notation is used in [21].) In this case, the adjoint Lie superalgebra is

the orthosymplectic algebra osp(1|2).

(b) An example of infinite-dimensional Lie antialgebras, related to vector fields

over the line, is the following algebra AK(1) = 〈εn, n∈ Z〉 ⊕ 〈ai, i ∈ Z + 1
2 〉, satisfying

εn · εm = εn+m,

εn · ai = 1
2an+i,

ai · aj = 1
2 ( j − i)εi+ j.

In this case, the adjoint Lie superalgebra ovs(AK(1)) is the Neveu–Schwarz superalgebra

K(1) = 〈Ln, n∈ Z〉 ⊕ 〈Ai, i ∈ Z + 1
2 〉 in which

[Ln, Lm] = 1

2
(m − n)Ln+m,

[Ln, Aj] = 1

2

(
i − n

2

)
An+i,

[Ai, Aj] = Li+ j.

�
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Superalgebras Associated to Riemann Surfaces 7

3 Geometric Construction

In this section, we define the superalgebras of Krichever–Novikov type associated to an

arbitrary punctured Riemann surface and study their main properties. We stress on the

case of the sphere with three punctures.

3.1 Generalized Krichever–Novikov algebras

Let Σ be a compact Riemann surface of arbitrary genus g, or equivalently, a smooth

projective curve over C. Choose a set of N distinct points P = {P1, . . . , PN}, called punc-

tures, on Σ . Denote Ag,N the associative algebra consisting of meromorphic functions on

Σ which are holomorphic outside the set of punctures with point-wise multiplication.

The Krichever–Novikov algebra gg,N is the Lie algebra consisting of meromorphic vec-

tor fields on Σ which are holomorphic outside the set of punctures, with the usual Lie

bracket of vector fields expressed locally as

[ f, g] =
[

f(z)
d

dz
, g(z)

d

dz

]
= ( f(z)g′(z) − f ′(z)g(z))

d

dz
.

Both Ag,N and gg,N are infinite-dimensional algebras. In the case of two punc-

tures on the sphere the algebra gg,N is nothing but the Witt algebra. The algebras, and

their extensions, obtained in the case of two punctures in higher genus were introduced

and studied by Krichever and Novikov [12–14]. Bases for these algebras (and for the den-

sity modules) in various cases of two and more punctures were given in [23–25].

3.2 Superalgebras of Krichever–Novikov type

To the above geometric situation, one can associate a Lie superalgebra and a Jordan

superalgebra (which is a Lie antialgebra). Denote by Fλ the space of tensor densities of

weight λ, λ ∈ Z ∪ 1
2 + Z (in the sequel most of the time λ will take the value −1,− 1

2 , 0).

One has the following natural space identifications:

Ag,N
∼= F0, gg,N

∼= F−1.

The products of the algebras can be realized in the density modules. More generally,

consider the following bilinear operations, given in local coordinates:

• : Fλ × Fμ −→ Fλ+μ,

( f(z)(dz)λ, g(z)(dz)μ) 
→ f(z)g(z)(dz)λ+μ,
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8 S. Leidwanger and S. Morier-Genoud

and

{ , } : Fλ × Fμ −→ Fλ+μ+1,

( f(z)(dz)λ, g(z)(dz)μ) 
→ (μf ′(z)g(z) − λ f(z)g′(z))(dz)λ+μ+1.

These operations endow the space ⊕λFλ with a structure of Poisson algebra.

The algebras Ag,N and gg,N naturally act on F− 1
2
. Furthermore, one can construct

a structure of Lie superalgebra and Jordan superalgebra, on the space gg,N ⊕ F− 1
2

and

Ag,N ⊕ F− 1
2
, respectively.

Definition 3.1. (i) The space gg,N ⊕ F− 1
2

equipped with the bracket [ , ] given in local

coordinates by

[ f(z)(dz)−1, g(z)(dz)−1] = { f(z)(dz)−1, g(z)(dz)−1},

[ f(z)(dz)−1, γ (z)(dz)−
1
2 ] = { f(z)(dz)−1, γ (z)(dz)−

1
2 }, (3.1)

[ϕ(z)(dz)−
1
2 , γ (z)(dz)−

1
2 ] = 1

2ϕ(z)(dz)−
1
2 • γ (z)(dz)−

1
2

is a Lie superalgebra. We call it a Lie superalgebra of Krichever–Novikov type and denote

LKN.

(ii) The space Ag,N ⊕ F− 1
2

equipped with the product ◦ given in local

coordinates by

f(z) ◦ g(z) = f(z) • g(z),

f(z) ◦ γ (z)(dz)− 1
2 = 1

2 f(z) • γ (z)(dz)−
1
2 , (3.2)

ϕ(z)(dz)−
1
2 ◦ γ (z)(dz)−

1
2 = {ϕ(z)(dz)−

1
2 , γ (z)(dz)−

1
2 }

is a Jordan superalgebra (which is also a Lie antialgebra). We call it a Jordan superal-

gebra of Krichever–Novikov type and denote JKN. �

The fact that (3.1) defines a Lie superbracket is well known (this can also be

checked directly from the definitions). The fact that JKN is a Jordan superalgebra comes

from a more general construction starting from an associative algebra A and a deriva-

tion D on A (here A = Ag,N and D = (dz)−1 as an element of gg,N ), see [19] or Section 4.1
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Superalgebras Associated to Riemann Surfaces 9

for more details. One can check by direct computation that (3.2) satisfies the axioms of

Lie antialgebra.

Remark 3.2. Alternatively, a unital Jordan algebra (which is not a Lie antialgebra) can

be defined by modifying the product in JKN with

f(z) ◦ γ (z)(dz)−
1
2 = f(z) • γ (z)(dz)− 1

2 ,

in the second equation of (3.2). �

Example 3.3. The first example is the case of two punctures on the sphere:

Σ = P
1(C), P = {0,∞}.

For the algebra of meromorphic functions one obtains C[z, z−1], the algebra of Laurent

polynomials. The vector field algebra is the famous Witt algebra W generated by

Ln(z) = zn+1 d

dz
, n∈ Z,

satisfying

[Ln, Lm] = (m − n)Ln+m.

In this case, the associated Lie superalgebra and Jordan superalgebra defined in

Definition 3.1 are

LKN � K(1), JKN �AK(1),

where K(1) and AK(1) are as in Example 2.1.

The relationship between these two algebras was given in [22] in terms of contact

vector fields on the supercircle. �

We come back to the general case and state our first result.

Theorem 3.4. The Krichever–Novikov superalgebras are related by

(i) LKN
∼= ovs(JKN),

(ii) LKN
∼= Der(JKN). �
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10 S. Leidwanger and S. Morier-Genoud

Proof. (i) Since JKN is a Lie antialgebra, one can apply the construction described in

Section 2.3. The isomorphism between the Lie superalgebras LKN and ovs(JKN) is given by

f(z)(dz)−
1
2 
→ f(z)(dz)−

1
2 ,

f(z)(dz)−1 
→ 2(dz)−
1
2 � f(z)(dz)−

1
2 .

(ii) The algebra Der(JKN) is the Lie subalgebra of (End(JKN), [ , ]) such that any

element D ∈ Der(JKN) can be written as

D = D0 + D1,

where D0 and D1 are even and odd endomorphisms, respectively, satisfying

Di(A◦ B) = Di(A) ◦ B + (−1)i ĀA◦ Di(B),

for all homogeneous elements A and B in JKN (recall that ◦ is the product on JKN that is

defined using the operation • and { , } according to the parity of the elements).

One can naturally embed LKN into Der(JKN). Indeed, for any even element f ∈
LKN, that is, f ∈ F−1, and any odd element ϕ ∈ LKN, that is, ϕ ∈ F− 1

2
, define endomor-

phisms of JKN by

⎧⎨
⎩Rf (a) = {a, f}, ∀a∈ Ag,N,

Rf (ω) = {ω, f}, ∀ω ∈ F− 1
2
,

⎧⎨
⎩Rϕ(a) = 1

2a • ϕ, ∀a∈ Ag,N,

Rϕ(ω) = {ω, ϕ}, ∀ω ∈ F− 1
2
.

One can easily see that Rf and Rϕ are elements of Der(JKN) (this also can be deduced

from a more general statement, [22, Lemma 3.2]). Let us show that every element in

Der(JKN) is of this form.

Case (a): Consider an even derivation D in Der(JKN). The restriction of D to Ag,N

is an element of Der(Ag,N). It is well known that gg,N = Der(Ag,N), through the natural

right action. Thus, there exists f ∈ gg,N such that

D(a) = {a, f} ∀ a∈ Ag,N .
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Superalgebras Associated to Riemann Surfaces 11

In the sequel, the computations are made using a local coordinate z, but to simplify the

notation we often drop off the variable. Introduce

δ(z)(dz)− 1
2 = D(1 dz− 1

2 ),

and let us show that δ(z) = 1
2 f ′(z). Using the property of derivation, we can write for all ϕ

D({ϕ dz− 1
2 , dz− 1

2 }) = {D(ϕ dz− 1
2 ), dz− 1

2 } + {ϕ dz− 1
2 , D(dz− 1

2 )}.

In the above equality,

LHS = D(− 1
2ϕ′) = 1

2ϕ′′ f,

RHS = {D(ϕ) dz− 1
2 + ϕδ dz− 1

2 , dz− 1
2 } + {ϕ dz− 1

2 , δ dz− 1
2 }

= {(−ϕ′ f + ϕδ) dz− 1
2 , dz− 1

2 } + {ϕ dz− 1
2 , δ dz− 1

2 }

= 1
2ϕ′′ f + 1

2ϕ′ f ′ − ϕ′δ.

Since the equality holds for all ϕ, we deduce δ(z) = 1
2 f ′(z).

Now, we compute for all ω dz− 1
2 ∈ F− 1

2
,

D(ω dz− 1
2 ) = D(2ω ◦ dz− 1

2 ) = D(2ω) ◦ dz− 1
2 + 2ω ◦ D(dz− 1

2 )

= {ω, f} dz− 1
2 + ωD(dz− 1

2 )

= −ω′ f dz− 1
2 + 1

2ω f ′ dz− 1
2

= {ω dz− 1
2 , f(dz)−1}.

We have proved in the case of even derivation that D = Rf .

Case (b): Consider an odd derivation D in Der(JKN). Introduce

ϕ(z) dz− 1
2 := D(2),
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12 S. Leidwanger and S. Morier-Genoud

and let us show that D(dz− 1
2 ) = 1

2ϕ′(z). Writing

D(dz− 1
2 ) = D(2 ◦ dz− 1

2 ) = D(2) ◦ dz− 1
2 + 2 ◦ D(dz− 1

2 )

= {ϕ dz− 1
2 , dz− 1

2 } + 2D(dz− 1
2 )

= − 1
2ϕ′ + 2D(dz− 1

2 ),

we deduce D(dz− 1
2 ) = 1

2ϕ′(z).

Now, it is easy to compute

D(a) = 1
2a • ϕ dz− 1

2 , ∀ a∈ Ag,N

and

D(ω dz− 1
2 ) = {dz− 1

2 , ϕ dz− 1
2 }, ∀ ω ∈ F− 1

2
.

Consequently, one has D = Rϕ . �

Remark 3.5. In general, given a Lie antialgebra A one always has an action, by right

multiplication, of ovs(A) on A, that is, an inclusion ovs(A) ↪→ Der(A), but it is not nec-

essarily an isomorphism [22]. Isomorphisms were established in the cases A=K3 and

A=AK(1). Theorem 3.4 enlarges the class of Lie antialgebras for which one has the

identification ovs(A) ∼= Der(A). �

3.3 Representations

An important result in the representation theory of Lie antialgebras [22] is the fact that

any LA-representation of a Lie antialgebra A generates a representation of the Lie super-

algebra ovs(A). The converse is in general not true. However, it is surprising that in some

cases the action of the odd elements of ovs(A) considered with the anticommutator [ , ]+
generate a representation of A. This feature is developped in this section.

Consider the vector superspace Vλ = Fλ ⊕ Fλ+ 1
2
, where λ ∈ Z ∪ 1

2 + Z. The ele-

ments of Vλ belonging to Fλ and Fλ+ 1
2

are considered as even and odd, respectively.

We give natural actions of the algebras LKN and JKN on Vλ.
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Superalgebras Associated to Riemann Surfaces 13

Define the linear map ρ̃ : LKN = gg,N ⊕ F− 1
2
→ End(Vλ) by

ρ̃( f
ϕ)

(
v

ω

)
=
(

{ f, v} + 1
2ϕ • ω

{ f, ω} + {ϕ, v}

)
, (3.3)

where f ∈ gg,N , ϕ ∈ F− 1
2
, v ∈ Fλ, and ω ∈ Fλ+ 1

2
, and define the linear map ρ : JKN = Ag,N ⊕

F− 1
2
→ End(Vλ) by

ρ( f
ϕ)

(
v

ω

)
=
(

λ f • v + 1
2ϕ • ω

( 1
2 − λ) f • ω + {ϕ, v}

)
, (3.4)

where f ∈ Ag,N , ϕ ∈ F− 1
2
, v ∈ Fλ, ω ∈ Fλ+ 1

2
.

Note that one has

ρ̃|F− 1
2

= ρ|F− 1
2
.

Theorem 3.6. (i) The map ρ̃ is a faithful representation of the Krichever–Novikov Lie

superalgebra LKN for any value of λ,

(ii) The map ρ is a faithful (LA-)representation of the Krichever–Novikov Jordan

superalgebra JKN if and only if λ = 0 or 1
2 . �

Proof. Point (i) is a classical fact. Point (ii) can be established by direct computations.

Indeed, one can check that the identities

[ρ(ϕ), ρ(γ )]+ = ρ(ϕ ◦ γ ), [ρ( f), ρ(ϕ)]+ = ρ( f ◦ ϕ),

are always satisfied for any odd elements ϕ and γ and even element f in JKN. Whereas

the identity involving two even elements

[ρ( f), ρ(g)]+ = ρ( f ◦ g)

is satisfied if and only if λ = 0 or 1
2 . �

Remark 3.7. In other words, Theorem 3.6 implies that the actions of odd elements of

LKN on Vλ generate a Jordan subalgebra of
(
End(Vλ), [ , ]+

)
, for λ = 0, 1

2 , isomorphic to

JKN. �
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14 S. Leidwanger and S. Morier-Genoud

3.4 The case of three punctures on the sphere

Consider the three-point situation in genus 0:

Σ = P
1(C), P = {α,−α,∞},

where α ∈ C \ {0}. This case has been studied in [7, 8, 23].

Note that the moduli space M0,3 is trivial so that the constructions do not

depend on the choice of α.

The corresponding function algebra A0,3 has basis {Gn, n∈ Z}, where the func-

tions are locally defined by

G2k(z) = (z − α)k(z + α)k, G2k+1(z) = z(z − α)k(z + α)k,

and satisfying

Gn Gm =
⎧⎨
⎩Gn+m + α2Gn+m−2, n, m odd,

Gn+m otherwise.
(3.5)

The algebra of vector fields g0,3 has basis {Vn}n∈Z, where

V2k(z) = z(z − α)k(z + α)k d

dz
, V2k+1(z) = (z − α)k+1(z + α)k+1 d

dz
,

satisfying the relation

[Vn, Vm] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(m − n)Vn+m, n, m odd,

(m − n)Vn+m + (m − n− 1)α2Vn+m−2, n odd, m even,

(m − n)(Vn+m + α2Vn+m−2), n, m even.

(3.6)

The next proposition gives the description in terms of generators and relations,

of the superalgebras of Krichever–Novikov type obtained in the particular case of three

punctured sphere.

Proposition 3.8. (i) The Lie superalgebra of Krichever–Novikov type, L0,3 = g0,3 ⊕ F− 1
2
,

has even basis vectors Vn, n∈ Z, and odd basis vectors ϕi, i ∈ Z + 1
2 , satisfying the
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Superalgebras Associated to Riemann Surfaces 15

relations (3.6) and

[Vn, ϕi] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i − n

2

)
ϕn+i, n odd, i − 1

2
odd,(

i − n

2

)
ϕn+i +

(
i − n

2
− 1

)
α2ϕn+i−2, n odd, i − 1

2
even,(

i − n

2

)
ϕn+i +

(
i − n

2
+ 1

2

)
α2ϕn+i−2, n even, i − 1

2
odd,

(
i − n

2

)
ϕn+i +

(
i − n

2
− 1

2

)
α2ϕn+i−2, n even, i − 1

2
even,

[ϕi, ϕ j] =
⎧⎨
⎩

Vi+ j + α2Vi+ j−2, i − 1

2
even, j − 1

2
even,

Vi+ j, otherwise.

(ii) The Jordan superalgebra of Krichever–Novikov type, J0,3 = A0,3 ⊕ F− 1
2

has

even basis vectors Gn, n∈ Z, and odd basis vectors ϕi, i ∈ Z + 1
2 , satisfying the relations

(3.5) and

Gn ◦ ϕi =
⎧⎨
⎩

1
2ϕn+i, n even or i − 1

2 odd,

1
2 (ϕn+i + α2ϕn+i−2), n odd and i − 1

2 even,

ϕi ◦ ϕ j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( j − i)Gi+ j, i − 1
2 odd, j − 1

2 odd,

( j − i)Gi+ j + ( j − i + 1)α2Gi+ j−2, i − 1
2 even, j − 1

2 odd,

( j − i)(Gi+ j + α2Gi+ j−2), i − 1
2 even, j − 1

2 even.
�

Proof. This can be established by direct computations using the following notation:

ϕ2k+ 1
2
=

√
2z(z − α)k(z + α)k(dz)−

1
2 , ϕ2k− 1

2
=

√
2(z − α)k(z + α)k(dz)−

1
2 .

to express locally the elements of the density space F− 1
2
. �

3.5 Embeddings K(1) ⊂ L0,3 and AK(1) ⊂J0,3

One can naturally recover the algebras obtained in the case of two punctures inside

those obtained from three punctures. This corresponds to restriction of the set of label-

ing integers in the presentation of L0,3 and J0,3 to nonpositive integers, so that one only

keeps the functions and vector fields which are holomorphic at infinity.
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16 S. Leidwanger and S. Morier-Genoud

Proposition 3.9. (i) The subalgebra L−
0,3 := 〈Vn, n≤ 0; ϕi, i ≤ 1

2 〉 of L0,3 is isomorphic to

K(1).

(ii) The subalgebra J −
0,3 := 〈Gn, n≤ 0; ϕi, i ≤ 1

2 〉 of J0,3 is isomorphic to AK(1). �

Proof. Points (i) and (ii) can be viewed geometrically using the following change in

coordinates:

ω = z − α

z + α
.

Equivalently, the isomorphisms can be established using direct identification between

the generators, as the following for case (ii):

ε−1 = G0 + 2αG−1 + 2α2G−2, ε1 = G0 − 2αG−1 + 2α2G−2, a− 1
2
= 1

2
√

α
(ϕ 1

2
+ αϕ− 1

2
). �

4 Algebraic Construction

In this section, we recover the superalgebras of Krichever–Novikov type described in

Section 3.4 in a purely algebraic way. It turns out that the construction is related to that

of [26, 27].

4.1 Doubling process

We consider Jordan superalgebras of infinite dimension which can be obtained using the

following algebraic construction. Let A be a commutative associative complex algebra

with unit and D be a derivation on A. Consider the space Jσ (A, D) = A⊕ ηA, where ηA

is an isomorphic copy of A considered as an odd component, and σ = 1 or 1
2 is a scalar

parameter, together with the following supercommutative product:

a ◦ b = ab,

a ◦ ηb = σ η(ab),

ηa ◦ ηb = aD(b) − D(a)b,

(4.1)

for all a, b ∈ A. This construction as well as various generalizations can be found in

[5, 9, 11, 18, 19].

The algebra J1(A, D) is called vector-type Jordan superalgebra [11, 18]. The alge-

bra J 1
2
(A, D) is called a full derivation Jordan superalgebra [19]. It is known that these

algebras are simple iff A has no nontrivial D-invariant ideals, [18, 19].
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Superalgebras Associated to Riemann Surfaces 17

The algebras J1(A, D) and J 1
2
(A, D) are not isomorphic. Indeed, the first one is

unital whereas the second one is not (it is half-unital). We will show, Theorem 4.8, that

such algebras can be obtained from the representation of the same Lie superalgebra.

Direct computations lead to the following.

Proposition 4.1. The algebra (J 1
2
(A, D), ◦) is a Lie antialgebra. �

One can therefore associate a Lie superalgebra to (J 1
2
(A, D), ◦) using the con-

struction of Section 2.3. Denote L(A, D) the Lie superalgebra ovs(J 1
2
(A, D)). In this con-

text, the construction L(A, D) can be simplified and expressed in terms of a doubling

process as well.

Proposition 4.2. The algebra L(A, D) is isomorphic to A⊕ ηA equipped with the fol-

lowing skewsymmetric superbracket:

[a, b] = aD(b) − D(a)b,

[a, ηb] = η(aD(b) − 1
2 D(a)b),

[ηa, ηb] = ab,

(4.2)

for all a, b ∈ A. �

Proof. Any even element in L(A, D) can be identified with an element of A as follows:

ηa � ηb ≡ ab.

Since A is unital, the above identification does not depend on the representative ηa � ηb.

Through this identification the bracket on L(A, D) given in (2.1) becomes as in (4.2). �

Example 4.3. The following choice

A= C[x], D = ∂x

leads in the case σ = 1 to the well-known Jordan superalgebras of vector fields on

the line over C, [20] and in the case σ = 1
2 to the Kaplansky–McCrimmon polynomial
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18 S. Leidwanger and S. Morier-Genoud

superalgebra, [10, 19]. The variant considering A= C[x, x−1] would lead exactly to the

algebra AK(1) (given in Examples 2.1 and 3.3) �

4.2 Main example

We apply the doubling process with the following choices:

A= C[x, y±1]/(x2 − θy2p − 1), D = x∂y + pθy2p−1∂x.

where θ ∈ C
∗ and p∈ Z

∗ are parameters.

We use the notation Jσ (θ, p) := (Jσ (A, D), ◦) when A and D are as above. Con-

structions in [26, 27] are based on this type of algebras.

Proposition 4.4. The algebras Jσ (θ, p) are simple. �

Proof. It is equivalent to show that the algebra A has no non-trivial D-invariant ideals.

The proof given in [27] in a particular case can easily be adapted for arbitrary values of

θ and p. We sketch the proof here for the sake of completeness.

Assume I is a nonzero D-invariant ideal of A. Choose any element f(y) + xg(y)

in I , where f, g ∈ C[y±1]. One has

f(y)2 − (1 + θy2p)g(y)2 = ( f(y) + xg(y))( f(y) − xg(y)) ∈ I.

Therefore, we obtain that I contains an element h(y) of C[y±1]. Multiplying by ym for

some convenient m ∈ N, we can assume that h(y) belongs to C[y].

Now, we can prove by induction that the elements x2k−1h(k)(y), where h(k) is the

kth derivative of h with respect to y, all belong to I . Indeed, writing that D(h(y)) = xh′(y)

belongs to I gives the property for k= 1. The induction is then based on the following

equality:

D(x2kh(k)(y)) = x2k+1h(k+1)(y) + 2kpθy2p−1x2k−1h(k)(y).

Consequently, we obtain that I contains an element xm, for a suitable m ∈ N. The follow-

ing computation

yD(xm) = pmxm+1 − pmxm−1,

implies that xm−1 also belongs to I . By induction, this yields to 1 belongs to I , and

therefore I is equal to A itself. �
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Superalgebras Associated to Riemann Surfaces 19

A presentation by generators and relations of the algebra Jσ (θ, p) is the

following:

Jσ (θ, p) = 〈xn, yn, ai, bi, n∈ Z, i ∈ 1
2 + Z〉 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn xm = xn+m,

xn ym = yn+m,

yn ym = xn+m + θxn+m+2p,

xn aj = σan+ j,

xn bj = σbn+ j,

yn aj = σbn+ j,

yn bj = σ(an+ j + θan+ j+2p),

ai aj = ( j − i)yi+ j,

ai bj = ( j − i)xi+ j + θ( j − i + p)xi+ j+2p,

bi bj = ( j − i)(yi+ j + θyi+ j+2p).

(4.3)

This presentation is obtained from the construction (4.1) using the notation

xn = yn, yn = xyn, an− 1
2
= ηyn, bn− 1

2
= η(xyn).

The Lie superalgebra L(θ, p) = ovs(J 1
2
(θ, p)) is described as follows:

L(θ, p) = 〈Ln, Hn, Ai, Bi, n∈ Z, i ∈ 1
2 + Z〉,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Ai, Aj] = Li+ j,

[Bi, Bj] = Li+ j + θ Li+ j+2p,

[Ai, Bj] = Hi+ j,

[Ln, Ai] =
(
i − n

2

)
Bn+i,

[Ln, Bi] =
(
i − n

2

)
An+i + θ

(
i − n

2
+ p

)
An+i+2p,

[Hn, Ai] =
(
i − n

2

)
An+i + θ

(
i − n

2
− p

2

)
An+i+2p,

[Hn, Bi] =
(
i − n

2

)
Bn+i + θ

(
i − n

2
+ p

2

)
Bn+i+2p,

[Ln, Lm] = (m − n)Hn+m,

[Ln, Hm] = (m − n)Ln+m + θ(m − n+ p)Ln+m+2p,

[Hn, Hm] = (m − n)(Hn+m + θ Hn+m+2p).
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20 S. Leidwanger and S. Morier-Genoud

The particular values θ = α2, p= −1 lead to the algebras described in

Proposition 3.8. One immediately deduces the following:

Proposition 4.5. (i) The Lie superalgebra L0,3 is isomorphic to the subalgebra of

L(α2,−1) generated by {H2k, L2k+1, A2k+ 1
2
, B2k− 1

2
; k∈ Z},

(ii) The Lie antialgebra J0,3 is isomorphic to the subalgebra of J 1
2
(α2,−1) gener-

ated by {x2k, y2k+1, a2k+ 1
2
, b2k− 1

2
; k∈ Z}. �

4.3 Interesting subalgebras

In [26, 27], the author constructs infinite-dimensional Jordan superalgebras of “new

type”, in the sense that they are not isomorphic to an algebra of type Jσ (A, D) nor to

Cheng–Kac superalgebras. The superalgebras in [26, 27] are subalgebras of J1(−1, p) for

p= 1 and 2, and are considered over an arbitrary ground field of characteristic zero (not

necessarily C). Let us introduce the following notation:

Jσ (θ, p)+ = 〈x2k, y2k+1, a2k+ 1
2
, b2k− 1

2
; k∈ N〉.

Proposition 4.6 ([26, 27]). (i) If −1 is not a square in the ground field, then J1(−1, 1)+ is

a simple Jordan superalgebra of “new type”,

(ii) J1(−1, 2)+ is always a simple Jordan superalgebra of “new type”. �

Similar statements hold for the half-unital algebras J 1
2
(θ, p)+. The “new type”

algebras J 1
2
(θ, 1)+ cannot be achieved in the geometric setting of Krichever–Novikov,

due to solutions α2 = θ in C, see Proposition 3.9. The “new type” algebras J 1
2
(θ, 2)+ can

be realized geometrically considering the Krichever–Novikov algebras coming from a

torus with two punctures, see Section 4.5.

4.4 From Lie representations to Jordan representations

A remarkable property is that both Jordan algebras J 1
2
(A, D) and J1(A, D) can be real-

ized using the density modules of the Lie superalgebra L(A, D). Here, we describe explic-

itly this property for the algebras Jσ (θ, p). The representations correspond to those

defined geometrically in Section 3.3.

Consider the infinite-dimensional vector superspace Vλ, with basis

{ fm, gm, φ j, γ j}, m ∈ Z, j ∈ 1
2 + Z, where fm and gm are even elements and φ j and γ j
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Superalgebras Associated to Riemann Surfaces 21

odd elements. Define the following odd operators Ai and Bi on Vλ

Ai · φ j = fi+ j,

Ai · γ j = gi+ j,

Ai · fm =
(m

2
+ λi

)
γm+i,

Ai · gm =
(m

2
+ λi

)
φm+i + θ

(m

2
+ λi + p

2

)
φm+i+2p,

Bi · φ j = gi+ j,

Bi · γ j = fi+ j + θ fi+ j+2p,

Bi · fm =
(m

2
+ λi

)
φm+i + θ

(m

2
+ λi + λp

)
φm+i+2p,

Bi · gm =
(m

2
+ λi

)
γm+i + θ

(
m

2
+ λi +

(
1

2
+ λ

)
p
)

γm+i+2p (4.4)

and the following even operators Ln and Hn

Ln · φ j = (( 1
2 + λ)n+ j)γn+ j,

Ln · γ j = (( 1
2 + λ)n+ j)φn+ j + θ(( 1

2 + λ)n+ j + p)φn+ j+2p,

Ln · fm = (m + λn)gm+n,

Ln · gm = (m + λn) fm+n + θ(m + λn+ p) fm+n+2p,

Hn · φ j = (( 1
2 + λ)n+ j)φn+ j + θ(( 1

2 + λ)(n+ p) + j)φn+ j+2p,

Hn · γ j = (( 1
2 + λ)n+ j)γn+ j + θ(( 1

2 + λ)n+ j + ( 3
2 + λ)p)γn+ j+2p,

Hn · fm = (m + λn) fm+n + θ(m + λn+ λp) fm+n+2p,

Hn · gm = (m + λn)gm+n + θ(m + λn+ (λ + 1)p)gm+n+2p.

Proposition 4.7. The system (4.4) defines a representation L(θ, p) → End(Vλ) of Lie

superalgebras. �

Proof. This can be established by direct computations or deduced from Theorem 3.6. �
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22 S. Leidwanger and S. Morier-Genoud

Define even endomorphisms Xn and Yn of Vλ by

Xn · φ j = ( 1
2 − λ)φn+ j, Yn · φ j = ( 1

2 − λ)γn+ j,

Xn · γ j = ( 1
2 − λ)γn+ j, Yn · γ j = ( 1

2 − λ)(φn+ j + θφn+ j+2p),

Xn · fm = λ fm+n, Yn · fm = λgm+n,

Xn · gm = λgm+n, Yn · gm = λ( fm+n + θ fm+n+2p).

Theorem 4.8. The subspace S := 〈Xn, Yn, Ai, Bi〉 of endomorphisms of Vλ defined in (4.4)

and (??) is a Jordan subalgebra of (End(Vλ), [ , ]+) if and only if

λ = 0, 1
4 , 1

2 .

Furthermore, one has the following isomorphisms of Jordan algebra:

• S �J 1
2
(θ, p), if λ = 0, 1

2 ,

• S �J1(θ, p), if λ = 1
4 . �

Proof. By direct computation, one checks that the following holds true for any values

of the parameter λ,

[Xn, Aj]+ = 1
2 An+ j,

[Xn, Bj]+ = 1
2 Bn+ j,

[Yn, Aj]+ = 1
2 Bn+ j,

[Yn, Bj]+ = 1
2 (An+ j + θ An+ j+2p),

[Ai, Aj]+ = ( j − i)Yi+ j,

[Ai, Bj]+ = ( j − i)Xi+ j + θ( j − i + p)Xi+ j+2p,

[Bi, Bj]+ = ( j − i)(Yi+ j + θYi+ j+2p).

In general, for arbitrary value of λ, the Jordan bracket between even operators of S is

not an element of S. One has

[Xn, Xm]+ · φ j = 2( 1
2 − λ)2φn+m+ j, Xn+m · φ j = ( 1

2 − λ)φn+m+ j,
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Superalgebras Associated to Riemann Surfaces 23

[Xn, Xm]+ · γ j = 2( 1
2 − λ)2γn+m+ j, Xn+m · γ j = ( 1

2 − λ)γn+m+ j,

[Xn, Xm]+ · fk = 2λ2 fm+n+k, Xn+m · fk = λ fm+n+k,

[Xn, Xm]+ · gk = 2λ2gm+n+k, Xn+m · gk = λgm+n+k,

so that

[Xn, Xm]+ = μXn+m ⇐⇒
⎧⎨
⎩2( 1

2 − λ)2 = μ( 1
2 − λ),

2λ2 = μλ

⇐⇒ λ = 0, μ = 1 or λ = 1
2 , μ = 1 or λ = 1

4 , μ = 1
2 .

Therefore, for λ = 0, 1
2 and λ = 1

4 , one obtains, respectively, the following addi-

tional relations:

[Xn, Xm]+ = Xn+m, [Xn, Xm]+ = 1
2 Xn+m,

[Xn, Ym]+ = Yn+m, [Xn, Ym]+ = 1
2 Yn+m,

[Yn, Ym]+ = Xn+m, [Yn, Ym]+ = 1
2 Xn+m.

In the case λ = 0, 1
2 we immediately obtain a specialization of J 1

2
(θ, p). In the case λ = 1

4 ,

we obtain a specialization of J1(θ, p) using the rescaling X′
n = 2Xn, Y′

n = 2Yn, A′
i = √

2Ai,

B ′
i = √

2Bi. �

Remark 4.9. The cases λ = 0, 1
2 correspond to the geometric situation described in

Theorem 3.6. The case λ = 1
4 does not appear in Theorem 3.6 as this value does not make

sense for meromorphic tensor densities. However, the unital algebra J1(A, D) can be

defined geometrically, see Remark 3.2. �

Remark 4.10. The analog of Theorem 4.8, cases λ = 0, 1
2 , was established in [16]. For

the algebras AK(1) and K(1), the extra case λ = 1
4 was not mentioned but can easily be

achieved using formulas in [16]. �
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24 S. Leidwanger and S. Morier-Genoud

4.5 Krichever–Novikov superalgebras on the torus

In [7, 8, 25], the case of two punctures on a surface of genus one is also studied. The

Krichever–Novikov superalgebras LKN and JKN associated to this case can be described

algebraically as follows. Consider

A= C[x, y±1]/(x2 + θ1 y2 + θ2 y4 − 1), D = x∂y − (θ1 y + 2θ2 y3)∂x.

The associated Jordan superalgebra Jσ (A, D) is

xn xm = xn+m,

xn ym = yn+m,

yn ym = xn+m − θ1 xn+m+2 − θ2 xn+m+4,

xn aj = σan+ j,

xn bj = σbn+ j,

yn aj = σbn+ j,

yn bj = σ(an+ j − θ1 an+ j+2 − θ2 an+ j+4),

ai aj = ( j − i)yi+ j,

ai bj = ( j − i)xi+ j − θ1 ( j − i + 1)xi+ j+2 − θ2 ( j − i + 2)xi+ j+4,

bi bj = ( j − i)(yi+ j − θ1 yi+ j+2 − θ2 yi+ j+4)

and the Lie superalgebra L(A, D) is

[Ai, Aj] = Li+ j,

[Ai, Bj] = Hi+ j,

[Bi, Bj] = Li+ j − θ1Li+ j+2 − θ2Li+ j+4,

[Ln, Ai] =
(
i − n

2

)
Bn+i,

[Ln, Bi] =
(
i − n

2

)
An+i − θ1

(
i − n

2
+ 1

)
An+i+2 − θ2

(
i − n

2
+ 2

)
An+i+4,
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[Hn, Ai] =
(
i − n

2

)
An+i − θ1

(
i − n

2
− 1

2

)
An+i+2 − θ2

(
i − n

2
− 1

)
An+i+4,

[Hn, Bi] =
(
i − n

2

)
Bn+i − θ1

(
i − n

2
+ 1

2

)
Bn+i+2 − θ2

(
i − n

2
+ 1

)
Bn+i+4,

[Ln, Lm] = (m − n)Hn+m,

[Ln, Hm] = (m − n)Ln+m − θ1 (m − n+ 1)Lm+n+2 − θ2 (m − n+ 2)Lm+n+4,

[Hn, Hm] = (m − n)(Hn+m − θ1 Hn+m+2 − θ2 Hn+m+4).

The algebra J1(θ, 2) used in [27] (see also Section 4.3) corresponds to the partic-

ular cases θ1 = 0 and θ2 = θ .
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tures of the theory of solitons.” Funktsionalńy̌ Analiz i ego Prilozheniya 21 (1987): 46–63.

[13] Krichever, I. M. and S. P. Novikov. “Virasoro type algebras, Riemann surfaces and strings in
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