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Abstract We reformulate several known results about continued fractions in com-
binatorial terms. Among them the theorem of Conway and Coxeter and that of Se-
ries, both relating continued fractions and triangulations. More general polygon dis-
sections appear when extending these theorems for elements of the modular group
PSL(2,Z). These polygon dissections are interpreted as walks in the Farey tessel-
lation. The combinatorial model of continued fractions can be further developed to
obtain a canonical presentation of elements of PSL(2,Z).

Keywords Continued fractions · Farey graph · Polygon dissections · Ptolemy rule ·
Pfaffians · Modular group

1 Introduction

In this paper we formulate combinatorial interpretations of algebraic properties of
continued fractions and of matrices in the modular group PSL(2,Z). The combina-
torics is related to polygon dissections and walks in the Farey tessellation.

The starting point of the present paper is a theorem due to Conway and Cox-
eter [11]. This theorem uses triangulations of polygons to classify Coxeter’s “frieze
patterns”. Work of Coxeter on frieze patterns was motivated by continued fractions;
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see [12]. Our first goal is to reformulate Conway and Coxeter’s theorem (and related
notions) directly in terms of continued fractions, and to compare it to some known
results in the area. In particular, we compare the Conway and Coxeter theorem with
the theorem of Series [32] that provides an embedding of continued fractions into the
Farey tessellation. This comparison offers a combinatorial relation between negative
and regular continued fractions.

The second goal of the paper is to develop the combinatorics that arose from the
above comparison. This leads to surprising results and notions, that appeared recently
in the literature [9, 30]. Among them are relationship between continued fractions and
Pfaffians of skew-symmetric matrices, and to some particular polygon dissections.
We give a survey of this recent development. Furthermore, along the same lines,
we obtain several statements that appear to be new. These are Theorems 5.13, 6.5,
6.7 and 7.3. We understand elements of PSL(2,Z) as generalized (finite) continued
fractions, triangulations are replaced by more general polygon dissections.

Let us outline possible applications and further developments of the combinatorial
approach discussed in this paper. We believe that the relation between PSL(2,Z) and
polygon dissections (see, in particular, Theorems 4.7 and 7.3) can be applied to other
groups extending PSL(2,Z). This relation connects the topic with several other areas
of algebra, geometry and combinatorics (such as cluster algebras, frieze patterns,
etc.). Application and combination of various methods known in these areas look
promising. One application is already explored in the second part of this work [27],
where we suggest a notion of q-deformed continued fractions and of q-deformed
rational numbers; this deformation preserves the combinatorial properties discussed
in the present paper.

The paper consists of six sections, each of them can be read independently.
In Sect. 2 we expose a combinatorial model for continued fractions. We consider

two classically known expansions of a rational number

r

s
= c1 − 1

c2 − 1

. . . − 1

ck

= a1 + 1

a2 + 1

. . . + 1

a2m

,

with ci ≥ 2 and ai ≥ 1. The algebraic relationship between these two expansions due
to Hirzebruch [21] is encoded in a triangulation of a polygon. Although this section
is introductory, it contains the main tools used throughout the paper, such as Ptolemy
rule and triangulations of polygons in the Farey graph. The statements in this section
are essentially reformulations of results that can be found in terms of frieze patterns
in Coxeter [12] and results in terms of hyperbolic geometry in Series [32]. We call
these statements “Facts” and illustrate them on running examples.

In Sect. 3 we focus on the matrices

M(c1, . . . , ck) :=
(

c1 −1

1 0

)(
c2 −1

1 0

)

· · ·
(

ck −1

1 0

)

(1.1)

Author's personal copy



Farey Boat

and

M+(a1, . . . , a2m) :=
(

a1 1

1 0

)(
a2 1

1 0

)

· · ·
(

a2m 1

1 0

)

associated with the continued fractions. We establish elementary algebraic proper-
ties of these matrices and in particular their algebraic relationship. In this section,
the remarkable identity M(c1, . . . , cn) = −Id appears using the combinatorial data
introduced in Sect. 2.

In Sect. 4 we describe combinatorially the complete set of positive integer n-tuples
(c1, . . . , cn) that are solutions of the equation

M(c1, . . . , cn) = ±Id. (1.2)

The theorem of Conway and Coxeter [11] provides a certain subset of solutions of
M(c1, . . . , cn) = −Id in terms of triangulations of n-gons. These solutions are ob-
tained from the triangulations by counting the number of triangles incident at each
vertex of the n-gon. All positive integer solutions of (1.2) are obtained from a special
class of dissections of n-gons called “3d-dissections” [30]. Under weaker conditions
on the coefficients ci , the continued fraction disappears gradually, but the correspond-
ing combinatorics lives on1 and becomes more sophisticated.

Let us be a little bit more technical and briefly explain the way combinatorics
appears in the context of the modular group. This relationship is central for the whole
paper. The standard choice of generators of PSL(2,Z) is

R =
(

1 1

0 1

)

, S =
(

0 −1

1 0

)

,

and all the relations in PSL(2,Z) are consequences of the following two rela-
tions: S2 = Id and (RS)3 = Id, implying the well-known isomorphism PSL(2,Z) ≃
(Z/2Z) ∗ (Z/3Z). It is then not difficult to deduce that every A ∈ PSL(2,Z) can be
written (non-uniquely) in the form

A = Rc1S Rc2S · · ·RcnS, (1.3)

in such a way that all the coefficients ci are positive integers. Note that (1.3) coincides
with (1.1), i.e., A = M(c1, . . . , cn). It is a rule in combinatorics that positive integers
count some objects, and Theorem 4.7 provides this interpretation in the case where A

is a relation in PSL(2,Z), i.e., when A = Id.
In Sect. 5 solutions of (1.2) are embedded into the Farey graph. The embedding

makes use of the sequence of rationals defined as the convergents of the negative con-
tinued fraction corresponding to a positive solution. Conway and Coxeter’s solutions
are then identified with “Farey polygons” (as proved in [28]). More general solutions
correspond to “walks on Farey polygons”.

In Sect. 6 we connect the topic to the Ptolemy–Plücker relations (and thus to clus-
ter algebras; see [14, 15]). The origin of these considerations goes back to Euler who

1. . . similar to Cheshire cat’s grin.
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proved a series of identities for the “continuants”, i.e., the polynomials describing
continued fractions in terms of the coefficients ci (or ai ). Following [33], we interpret
Euler’s identity in terms of the Pfaffian of a 4 × 4 skew-symmetric matrix. We also
give the “Pfaffian formula” (obtained in [9]) for the trace of the matrix M(c1, . . . , cn).
Note that this appearance of Pfaffians is not a simple artifact, it reflects a relationship
between the subject and symplectic geometry; see [10]. However, we do not describe
this relationship in the present paper.

Section 7 formulates some consequences of the developed combinatorics for the
modular group PSL(2,Z). Every element A of PSL(2,Z) can be written in the form
A = M(c1, . . . , ck) in infinitely many different ways. We make such a presentation
canonical by imposing the conditions ci ≥ 1 and k being the smallest possible, and
deduce presentations of A in the standard generators of PSL(2,Z). We prove that
the canonical presentation A = M(c1, . . . , ck) is given by the expansion into the
negative continued fraction of the quotient of greatest coefficients of A. Matrices
M(c1, . . . , ck) with ci ≥ 2 were used to parametrize conjugacy classes of PSL(2,Z);
see [22, 24, 34], the sequence (c1, . . . , ck) being the period of the continued fraction
of a fixed point of A, which is a quadratic irrational. In our approach the quadratic
irrational is replaced by a rational number.

2 Continued Fractions and Triangulations

This section is a collection of basic properties of continued fractions that we formu-
late in a combinatorial manner.

Let r and s be two coprime positive integers, and assume that r > s. The rational
number r

s has unique expansions

r

s
= c1 − 1

c2 − 1

. . . − 1

ck

= a1 + 1

a2 + 1

. . . + 1

a2m

, (2.1)

where ci ≥ 2 and ai ≥ 1, for all i.
The first expansion is usually called a negative, or reversal continued fraction the

second is a (more common) regular continued fraction. We will use the notation
❏c1, . . . , ck ❑ and [a1, . . . , a2m] for the above continued fractions, respectively. Note
that one can always assume the number of terms in the regular continued fraction to
be even, since [a1, . . . , aℓ + 1] = [a1, . . . , aℓ,1].

The explicit formula to obtain the coefficients (c1, . . . , ck) in terms of the coeffi-
cients (a1, . . . , a2m), whenever ❏c1, . . . , ck ❑ = [a1, . . . , a2m], is as follows:

(c1, . . . , ck) = (a1 + 1,2, . . . ,2︸ ︷︷ ︸
a2−1

, a3 + 2,2, . . . ,2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2,2, . . . ,2︸ ︷︷ ︸
a2m−1

). (2.2)

This expression can be found in [21, Eq. (19), p. 241] and [22, Eqs. (22), (23)], see
also [6, p. 93]. We will give a combinatorial explanation of this formula. In Sect. 3.3
we will give a detailed proof of a more general statement.
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The goal of this introductory section is to explain that both, regular and negative,
continued fractions can be encoded by the same simple combinatorial picture. We
will be considering triangulated n-gons with exactly two exterior triangles. All the
statements of this section are combinatorial reformulations of known results.

2.1 Triangulations with Two Exterior Triangles

Given a (convex) n-gon, we will be considering the classical notion of triangulation
which is a maximal dissection of the n-gon by diagonals that never cross except for
the endpoints. A triangle in a triangulation is called exterior if two of its sides are
also sides (and not diagonals) of the n-gon.

In this section, we consider only those triangulations that have exactly two exterior
triangles. In such a triangulation the diagonal connecting the exterior vertices of the
exterior triangles has the property to cross every diagonal of the triangulation:

Then, every triangle in the triangulation (except for the exterior ones) can be situated
with respect to this diagonal in one of the two possible ways:

that we refer to as “base-down” or “base-up”. We assume the first exterior triangle to
be situated base-down, and the last one base-up.

We enumerate the vertices from 0 to n − 1 in a (clockwise) cyclic order:

so that the exterior vertices are 0 and k + 1.

2.2 Combinatorial Interpretation of Continued Fractions

Given an n-gon and its triangulation with two exterior triangles, we fix the following
notation.
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(1) The integers (a1, a2, . . . , a2m) count the number of equally positioned triangles,
i.e. the triangulation consists of the concatenation of a1 triangles base down,
followed by a2 triangles base up and so on:

(2) The integers (c1, c2, . . . , cn = c0) count the number of triangles at each vertex,
i.e., the integer ci is the number of triangles incident to the vertex i.

Formula (2.2) is equivalent to the fact that these sequences define the same rational
number.

Fact 1 If (a1, . . . , a2m) and (c1, . . . , ck) are the integers defined by (1) and (2), re-
spectively, then they are the coefficients of the expansions of the same rational number
as a regular and negative continued fraction, i.e.,

[a1, . . . , a2m] = ❏c1, . . . , ck ❑.

For a proof, see Sect. 3.3.
It is clear that each of the data (a1, . . . , a2m) and (c1, . . . , ck) defines uniquely

(the same) triangulation of a polygon with two exterior triangles. The number n of
vertices is related to the sequences via

a1 + a2 + · · · + a2m = n − 2, c1 + c2 + · · · + ck = n + k − 3.

Fact 1 then implies the following.

Corollary 2.1 The set of rationals r
s > 1 is in a one-to-one correspondence with

triangulations of polygons with two exterior triangles.

Definition 2.2 Given a rational number r
s > 1, we denote by Tr/s the corresponding

triangulation with two exterior triangles.

Example 2.3 One has

7
5

= [1,2,1,1] = ❏2,2,3❑.

The corresponding triangulation T7/5 is
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2.3 The Mirror Formula

Consider the reversal of a regular continued fraction: [a2m,a2m−1, . . . , a1], which is
important in number theory; see, e.g., [1].

For every ℓ ≥ 0, define the ℓth convergent of the regular continued frac-
tion [a1, . . . , a2m] by

rℓ

sℓ
:= a1 + 1

a2 + 1

. . . + 1

aℓ

.

The convergents of the negative continued fraction are defined in a similar way.
The following statement is known as the “mirror formula”:

r2m

r2m−1
= [a2m,a2m−1, . . . , a1].

In Sect. 3.1, we will prove this statement with the help of the matrix form of continued
fractions.

The conversion into a negative continued fraction resorts to the coefficients ci on
the opposite vertices of Tr/s .

Corollary 2.4 One has

[a2m,a2m−1, . . . , a1] = ❏ck+2, ck+3, . . . , cn−1 ❑.

Proof This formula follows from Fact 1 when “rotating” the triangulation Tr/s . !

Example 2.5 The reversal of the continued fraction from Example 2.3 is as follows:

7
4

= [1,1,2,1] = ❏2,4❑.

2.4 Farey Sums and the Labeling of Vertices

The rational r
s can be recovered from the triangulation Tr/s by an additive rule.

Let us label the vertices of the n-gon by elements of the set Q ∪ { 1
0 }. We start

from 0
1 and 1

0 at vertices 0 and 1, respectively. We then extend this labeling to the
whole n-gon by the following “Farey summation formula”. Whenever two vertices
of the same triangle have been assigned the rationals r ′

s′ and r ′′
s′′ , then the third vertex

receives the label

r ′

s′ ⊕ r ′′

s′′ := r ′ + r ′′

s′ + s′′ .
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This process is illustrated by the following example.

(2.3)
The following statement is easily proved by induction. It can be viewed as a refor-

mulation of the result of Series [32]; for more details, see Sect. 2.6.

Fact 2 Labeling the vertices of the triangulation Tr/s according to the above rule,
the vertex k + 1 receives the label r

s .

Remark 2.6 More generally, all the rationals labeling the vertices 2,3, . . . , k, k + 1
are the consecutive convergents of the negative continued fraction ❏c1, . . . , ck ❑ repre-
senting r

s .

2.5 Recovering r and s with the Ptolemy–Plücker Rule

In Euclidean geometry, the Ptolemy relation is the formula relating the lengths of the
diagonals and sides of an inscribed quadrilateral. It reads

x1,3x2,4 = x1,2x3,4 + x2,3x4,1,

where xi,j is the Euclidean length between the vertices i and j .

In algebraic geometry and combinatorics, the Ptolemy relations appear as the rela-
tions between the Plücker coordinates of the Grassmannian Gr2,n, so that they are
often called Ptolemy–Plücker relations. We will use this name in the sequel. They
became an important and general rule in the theory of cluster algebras [14, 15]. The
“Ptolemy–Plücker rule” provides a way to calculate new variables from the old ones.

Let us explain how the Ptolemy rule allows one to calculate the numerator r and
the denominator s of the continued fraction (2.1) from the corresponding triangula-
tion Tr/s .

Given a triangulated n-gon with exactly two exterior triangles, we will assign a
value xi,j to all its edges (i, j) with i ≤ j , so that the system of equations
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{
xi,j xk,ℓ = xi,kxj,ℓ + xi,ℓxk,j , i ≤ k ≤ j ≤ ℓ,

xi,i = 0,
(2.4)

is satisfied. The system (2.4) will be called the Ptolemy–Plücker relations.

Fact 3 (i) The labels xi,j satisfying (2.4) are uniquely determined by the values xi,j

of the sides and diagonals of the triangulation.
(ii) Assume that xi,j = 1 whenever (i, j) is a side or a diagonal of the triangulation

Then all the labels xi,j are positive integers.
(iii) In the triangulation Tr/s , the assumption from Part (ii) implies the labeling

{
x0,k+1 = r

x1,k+1 = s.

Parts (i) and (ii) are widely known in the theory of cluster algebra; see [16,
Sect. 2.1.1]. We do not dwell on the proof here.

Part (iii) was already known to Coxeter [12, Eq. (5.6)] who proved (in a different
context) the following more general statement.

Fact 4 Under the assumption that xi,j = 1 whenever (i, j) is a side or a diagonal of
the triangulation, the integers xi,j are calculated as 2 × 2 determinants:

xi,j = det

(
ri rj

si sj

)

= risj − sirj , (2.5)

where ri
si

and rj
sj

are the rationals labeling the vertices i and j , as in (2.3).

We will prove yet a more general result in Sect. 6.3 (see Theorem 6.5).
We illustrate the statement (iii) by the following diagram.
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Fig. 1 A fragment of the Farey graph

2.6 Triangulations Tr/s Inside the Farey Graph

The triangulation (2.3) can be naturally embedded in the Farey tessellation. In this
section we explain how to extract the triangulation Tr/s from the Farey tessellation.
This construction is due to C. Series [32], and it allows one to deduce Fact 2 from her
result.

Definition 2.7 (a) The set of all rational numbers Q, completed by ∞ represented
by 1

0 , form a graph called the Farey graph. Two rationals written as irreducible frac-
tions, r ′

s′ and r ′′
s′′ , are connected by an edge if and only if r ′s′′ − r ′′s′ = ±1.

(b) Including Q ∪ {∞} into the border of the hyperbolic half-plane H , the edges
are often represented as geodesics of H (which is a half-circle) and the Farey graph
splits H into an infinite set of triangles called the Farey tessellation; see Fig. 1.

Basic properties of the Farey graph and Farey tessellation can be found in [19], we
will need the following.

(a) The edges of the Farey tessellation never cross, except at the endpoints.
(b) Every triangle in the Farey graph is of the form { r ′

s′ ,
r ′+r ′′
s′+s′′ ,

r ′′
s′′ }.

We focus on the part of the graph consisting of rational numbers greater than 1.
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The construction of [32] is as follows. Fix a rational number r
s and draw a vertical

line (L) ⊂ H through r
s . Collect all the triangles of the Farey tessellation crossed in

their interior by this line. This leads to the triangulation Tr/s .
The property of the triangles to be situated “base down” and “base up” now read

as: “base at the left of (L)” and “base at the right of (L)”. The two exterior vertices
are 0

1 and r
s . The vertices are enumerated from 1 to n from 1

0 to 0
1 in the decreasing

order. The vertex r
s is the vertex number k + 1.

Example 2.8 Choosing r
s = 7

5 , we have the following picture:

where we have colored in pink the triangles at the left of (L) and in blue those at the
right of (L). Note that the lowest triangle can be viewed either at the left or at the
right of (L). This is precisely the triangulation T7/5 (cf. Example 2.3) viewed inside
the Farey tessellation.

3 Matrices of Negative and Regular Continued Fractions

It is convenient to use 2 × 2 matrices to represent continued fractions. One reason is
that the corresponding matrices belong to the group SL(2,Z) and allow the opera-
tions, such as multiplication, inverse, transposition; see [31]. Another reason which
is particularly important for us is that matrices are more “perennial” than continued
fractions. They continue to exist when continued fractions are not well-defined (be-
cause of potential zeros in the denominators) and enjoy similar properties.

In this section, however, we still assume that the continued fractions are well-
defined. Consider, as in Sect. 2, a rational number expanded into continued fractions:

r

s
= ❏c1, . . . , ck ❑ = [a1, . . . , a2m].

Author's personal copy



S. Morier-Genoud, V. Ovsienko

The information about these expansions is contained in the matrices

M(c1, . . . , cn) :=
(

c1 −1

1 0

)(
c2 −1

1 0

)

· · ·
(

cn −1

1 0

)

(3.1)

and

M+(a1, . . . , a2m) :=
(

a1 1

1 0

)(
a2 1

1 0

)

· · ·
(

a2m 1

1 0

)

. (3.2)

Both matrices are elements of SL(2,Z).
The goal of this introductory section is to compare these two matrices and rewrite

one from another. This, in particular, implies formula (2.2). The end of the section
contains motivations for the sequel.

3.1 The Matrices of Continued Fractions

The matrices (3.1) and (3.2) are known as the matrices of continued fractions, because
one has the following statement whose proof is elementary.

Proposition 3.1 One has

M(c1, . . . , ck) =
(

r −r ′

s −s′

)

, M+(a1, . . . , a2m) =
(

r r ′′

s s′′

)

,

where r
s = [a1, . . . , a2m] = ❏c1, . . . , ck ❑, and where r ′

s′ = ❏c1, . . . , ck−1 ❑, and r ′′
s′′ =

[a1, . . . , a2m−1].

Therefore, the matrices M+(a1, . . . , a2m) and M(c1, . . . , ck) have the same first
column, but they are different. There exists a simple relationship between these ma-
trices.

Proposition 3.2 One has:

M+(a1, . . . , a2m) = M(c1, . . . , ck)R, (3.3)

where

R =
(

1 1

0 1

)

.

Proof Formula (3.3) can be easily obtained using the results of the previous section.
Indeed, in the triangulation Tr/s labeled as in (2.3), we see that r ′

s′ ,
r
s ,

r ′′
s′′ label the

vertices k, k + 1, k + 2, respectively. This implies r
s = r ′

s′ + r ′′
s′′ and hence (3.3). !

Alternatively and independently, the relation between the matrices
M+(a1, . . . , a2m) and M(c1, . . . , ck) can be established by elementary matrix com-
putations. This will be done in the next sections.
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Example 3.3 Choosing, as in Example 2.3, the rational r
s = 7

5 , one obtains

M+(1,2,1,1) =
(

7 4

5 3

)

, M(2,2,3) =
(

7 −3

5 −2

)

.

Note that these matrices have different traces and therefore cannot be conjugacy
equivalent.

3.2 Matrices M+(a1, . . . , a2m) and M(c1, . . . , ck) in Terms of the Generators

It will be useful to have the expressions of M+(a1, . . . , a2m) and M(c1, . . . , ck) in
terms of the generators of SL(2,Z). The following formulas are standard and can be
found in many sources.

Proposition 3.4 The matrices M+(a1, . . . , a2m) and M(c1, . . . , ck) have the follow-
ing decompositions

M+(a1, . . . , a2m) = Ra1La2Ra3La4 · · ·Ra2m−1La2m, (3.4)

M(c1, . . . , ck) = Rc1S Rc2S · · ·RckS, (3.5)

where

R =
(

1 1

0 1

)

, L =
(

1 0

1 1

)

, S =
(

0 −1

1 0

)

. (3.6)

For the sake of completeness, we give here an elementary proof.

Proof Formula (3.4) is obtained from the elementary computation
(

ai 1

1 0

)(
ai+1 1

1 0

)

=
(

aiai+1 + 1 ai

ai+1 1

)

=
(

1 ai

0 1

)(
1 0

ai+1 1

)

= Rai Lai+1 .

Formula (3.5) is obviously obtained from
(

ci −1

1 0

)

= Rci S. !

3.3 Converting the Matrices

The matrix M+(a1, . . . , a2m) with ai ≥ 1 can be rewritten in the form (3.1).

Proposition 3.5 One has:

M+(a1, . . . , a2m)

= −M(a1 + 1,2, . . . ,2︸ ︷︷ ︸
a2−1

, a3 + 2,2, . . . ,2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2,2, . . . ,2︸ ︷︷ ︸
a2m

,1,1).

(3.7)
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Let us stress that (3.7) is equivalent to (3.3) under the assumption that we already
know formula (2.2). However, our strategy is different, we use (3.7) to prove (2.2).

We will need the following lemma.

Lemma 3.6 One has Ra = −M(a + 1,1,1) and La = −M(1,2, . . . ,2︸ ︷︷ ︸
a

,1,1).

Proof With a direct computation one easily obtains M(a + 1,1,1) = −Ra . For the
second formula we use the following preliminary result that is easily obtained by
induction

(
2 −1

1 0

)a

=
(

a + 1 −a

a −(a − 1)

)

.

Then a direct computation leads to M(1,2, . . . ,2︸ ︷︷ ︸
a

,1,1) = −La . Hence the lemma.

!

Proof of Proposition 3.5 Since M(1,1,1) = −Id, one gets from Lemma 3.6

Rai Lai+1 = −M(ai + 1,2, . . . ,2︸ ︷︷ ︸
ai+1

,1,1).

Formula (3.7) then follows from (3.4) and the simple relation M(2,1,1, a + 1) =
−M(a + 2).

Proposition 3.5 is proved. !

Finally, we observe that the last three coefficients in (3.7) are (2,1,1), and can be
removed using the equality M(2,1,1) = −R. So that one gets

M+(a1, . . . , a2m) = M(a1 + 1,2, . . . ,2︸ ︷︷ ︸
a2−1

, a3 + 2,2, . . . ,2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2,2, . . . ,2︸ ︷︷ ︸
a2m−1

)R.

(3.8)
According to Proposition 3.1 the first column of the matrices from the right-hand-
side and from the left-hand-side gives the rational r

s . Therefore, this establishes for-
mula (2.2) and the relation (3.3).

3.4 Converting the Conjugacy Classes in PSL(2,Z)

We obtain it as a corollary of Proposition 3.5.

Corollary 3.7 The matrix M+(a1, . . . , a2m) is conjugacy equivalent to the matrix

M(a1 + 2,2, . . . ,2︸ ︷︷ ︸
a2−1

, a3 + 2,2, . . . ,2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2,2, . . . ,2︸ ︷︷ ︸
a2m−1

).

Proof This statement immediately follows from (3.8) using conjugation by R. !
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The integers

(c1, . . . , ck) = (a1 + 2,2, . . . ,2︸ ︷︷ ︸
a2−1

, a3 + 2,2, . . . ,2︸ ︷︷ ︸
a4−1

, . . . , a2m−1 + 2,2, . . . ,2︸ ︷︷ ︸
a2m−1

) (3.9)

appearing in the above formula were used to describe the conjugacy classes of
PSL(2,Z); see [34, p.91] and provide interesting characteristics of the quadratic irra-
tionalities.

Example 3.8 Let us go back to Example 3.3 that treats the case of the rational r
s = 7

5 .
Applying (3.8), we get that M+(1,2,1,1) is conjugacy equivalent to

M(3,2,3) =
(

12 −5

5 −2

)

.

3.5 Appearance of the Equation M(c1, . . . , cn) = −Id

It turns out that, taking into account all the coefficients (c1, . . . , cn) of the triangula-
tion Tr/s (and not only (c1, . . . , ck) as we did before), one obtains the negative of the
identity matrix. The following statement can be found in [3].

Proposition 3.9 One has M(c1, . . . , cn) = −Id.

Proof Rewrite

M(c1, . . . , cn) = M(c1, . . . , ck)M(1)M(ck+2, . . . , cn−1)M(1),

then (3.8) together with Corollary 2.4 and Proposition 3.2 imply

M(c1, . . . , cn) = M+(a1, . . . , a2m)R−1M(1)M+(a2m, . . . , a1)R−1M(1)

= M+(a1, . . . , a2m)S M+(a2m, . . . , a1) S,

where S is as in (3.6). Since M+(a2m, . . . , a1) = M+(a1, . . . , a2m)
t , we conclude

using the fact that ASAtS = −Id for all A ∈ SL(2,Z). !

Every rational number r
s thus corresponds to a solution of the equation

M(c1, . . . , cn) = −Id. This equation will be important in the sequel for two reasons.
Firstly, the equation M(c1, . . . , cn) = −Id makes sense and remains an interesting

equation in general, when there is no particular rational number and the correspond-
ing continued fraction. Expanding a rational in a continued fraction r

s = ❏c1, . . . , ck ❑,
we always assumed ci ≥ 2. This assumption makes the expansion unique. Allowing
ci = 1 for some i, one faces two difficulties: the expansion is no more unique (there
is an infinite number of them), and furthermore, the continued fraction may not be
well-defined (the denominators may vanish). It turns out that considering the matrices
M(c1, . . . , ck) with ci ≥ 1 removes these difficulties.

Secondly, we will study the presentation of elements of the group SL(2,Z) (and
PSL(2,Z)) in the form A = M(c1, . . . , cn) for some positive integers ci . Therefore, it
will be important to know the relations leading to different presentations of the same
element.
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3.6 The Semigroup Γ

The matrices M+(a1, . . . , a2m) of regular continued fractions do not represent arbi-
trary elements of PSL(2,Z).

Definition 3.10 The semigroup Γ ⊂ SL(2,Z) consists of the elements
M+(a1, . . . , a2m) where ai are positive integers.

As mentioned in Proposition 3.4, Γ is generated by the matrices R and L. It
consists of the matrices with positive entries satisfying the following conditions:

Γ =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣
a ≥ b ≥ d > 0,

a ≥ c ≥ d > 0

}
.

The semigroup Γ is the main character of a wealth of different problems of num-
ber theory, dynamics, combinatorics, etc. It was studied by many authors from differ-
ent viewpoints; see [2, 5, 7, 25] and references therein.

This is one of the motivations for a systematic study of the matrices M(c1, . . . , cn)

which is one of the main subjects of this paper.

4 Solving the Equation M(c1, . . . , cn) = ±Id

In this section we describe all positive integer solution of the two equations

M(c1, . . . , cn) = −Id and M(c1, . . . , cn) = Id,

for the matrices (3.1). Recall that matrices M(c1, . . . , cn) with ci ≥ 1, satisfying
M(c1, . . . , cn) = −Id, arose from continued fractions, see Sect. 3.5. The equation
M(c1, . . . , cn) = Id is quite different but also relevant.

One motivation for considering solutions with arbitrary positive integers ci ≥ 1 is
related to the observation that positive integers usually count interesting combinato-
rial objects. The solutions we classify in this section are given in terms of polygon
dissections: triangulations and also more general “3d-dissections” of n-gons. An-
other motivation is to extend most of the results and ideas of Sect. 2 from continued
fractions to arbitrary solutions of the equation M(c1, . . . , cn) = ±Id. Our third moti-
vation is related to a more general study (see Sect. 7) of decomposition of an arbitrary
element A ∈ PSL(2,Z) in the form A = M(c1, . . . , cn). Solutions of the above equa-
tions describe relations in such a decomposition.

Let us also mention that equation M(c1, . . . , cn) = −Id considered over C defines
an interesting algebraic variety closely related to the classical moduli space M0,n of
configurations of points in the projective line. Therefore, positive integer solutions of
this equation correspond to a class of rational points of M0,n; see [29]. We do not
consider geometric applications in the present paper.

Author's personal copy



Farey Boat

4.1 Conway and Coxeter Totally Positive Solutions

A classical theorem of Conway and Coxeter [11] describes a particular class of solu-
tions of the equation

M(c1, . . . , cn) = −Id. (4.1)

More importantly, this theorem relates this equation to combinatorics.
The following notion is the most important ingredient of the theory.

Definition 4.1 (a) Given a triangulation of a convex n-gon by non-crossing diago-
nals, its quiddity is the (cyclically ordered) n-tuple of positive integers, (c1, . . . , cn),
counting the number of triangles adjacent to the vertices.

(b) Given an n-tuple of positive integers, (c1, . . . , cn), we consider the following
sequence of rational numbers, or infinity:

ri

si
:= ❏c1, . . . , ci ❑,

for 1 ≤ i ≤ n.

For example, the coefficients ci of a negative continued fraction of a rational num-
ber r

s is a part of the quiddity of the triangulation Tr/s , and the rationals ri
si

are its
convergents; see Sect. 2.2. Of course, for continued fractions, the denominator of ri

si
cannot vanish.

Definition 4.2 The class of solutions of (4.1) satisfying the condition

ri

si
> 0, (4.2)

for all i ≤ n − 3, will be called totally positive.

We will see in Sect. 4.3 that the above condition of total positivity is equivalent to
the assumption that c1 + c2 + · · · + cn = 3n − 6.

The Conway and Coxeter theorem [11] establishes a one-to-one correspondence
between totally positive solutions of (4.1) and triangulations of the n-gon, via the
notion of quiddity that uniquely determines the triangulation.

Theorem 4.3 ([11]) (i) The quiddity of a triangulated n-gon is a totally positive
solution of (4.1).

(ii) A totally positive solution of (4.1) is the quiddity of a triangulated n-gon.

We do not dwell on the detailed proof of this classical result. For a simple complete
proof of Theorem 4.3 see [3, 20], and also [30]. The idea of the proof consists of three
observations.

(1) An n-tuple of integers (c1, . . . , cn) satisfying (4.1) must contain ci = 1 for
some i. Otherwise, for any sequence of integers (vi)i∈Z satisfying the linear re-
currence vi+1 = civi − vi−1, with the initial conditions (v0, v1) = (0,1), one has:

Author's personal copy



S. Morier-Genoud, V. Ovsienko

vi+1 > vi . Therefore, the sequence (vi)i∈Z cannot be periodic. This contradicts the
equation M(c1, . . . , cn)

( 1
0

)
= ±

( 1
0

)
.

(2) The total positivity condition (4.2) implies that, whenever ci = 1 for some i,
the two neighbors ci−1, ci+1 must be greater or equal to 2. Indeed, for two consecu-
tive 1’s, if (ci, ci+1) = (1,1), one has vi+2 = vi+1 − vi = vi − vi−1 − vi = −vi−1.

(3) The “local surgery” operation

(c1, . . . , ci−1, 1, ci+1, . . . , cn) → (c1, . . . , ci−1 − 1, ci+1 − 1, . . . , cn) (4.3)

is then well-defined. It decreases n by 1, and does not change the matrix (3.1).
Indeed, M(c1, . . . , ci−1, 1, ci+1, . . . , cn) = M(c1, . . . , ci−1 − 1, ci+1 − 1, . . . , cn)

since
(

c + 1 −1

1 0

)(
1 −1

1 0

)(
c′ + 1 −1

1 0

)

=
(

cc′ − 1 −c′

c −1

)

=
(

c −1

1 0

)(
c′ −1

1 0

)

.

One then proceeds by induction on n, the induction step consists of cutting an
exterior triangle of a given triangulation, that corresponds to the operation (4.3) on
the quiddity.

Example 4.4 The sequence (2,2,2,5,4,2,2,1,4,2,4,1,3,2,5,1) is a solution
of (4.1) because it is the quiddity of the following triangulation of a hexadecagon:

Remark 4.5 (a) The meaning of total positivity will be explained in Sects. 5.1 and 6.3.
(b) The Conway and Coxeter theorem is initially formulated in terms of frieze

patterns. This notion, due to Coxeter [12], became popular mainly because its rela-
tions to cluster algebras; see [8]. Frieze patterns also play an important role in such
areas as quiver representations, differential geometry, discrete integrable systems (for
a survey; see [26]).
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4.2 The Complete Set of Solutions: 3d-Dissections

It turns out that, to classify all the solutions (with no total positivity condition), it is
natural to solve simultaneously the equations

M(c1, . . . , cn) = −Id and M(c1, . . . , cn) = Id.

This classification led to the following combinatorial notion.

Definition 4.6 (i) A 3d-dissection is a partition of a convex n-gon into sub-polygons
by means of pairwise non-crossing diagonals, such that the number of vertices of
every sub-polygon is a multiple of 3.

(ii) The quiddity of a 3d-dissection of an n-gon is defined, similarly to the case
of a triangulation, as a cyclically ordered sequence (c1, . . . , cn) of positive integers
counting sub-polygons adjacent to every vertex.

The following theorem was proved in [30].

Theorem 4.7 ([30]) (i) The quiddity of a 3d-dissection of an n-gon satisfies
M(c1, . . . , cn) = ±Id.

(ii) Conversely, every solution of the equation M(c1, . . . , cn) = ±Id with positive
integers ci is the quiddity of a 3d-dissection of an n-gon.

Similarly to Theorem 4.3, the proof uses induction on n. The idea is as follows.
Besides the operations (4.3), one needs another type of “local surgery” operations.
These operations remove two consecutive 1’s:

(c1, . . . , ci−1, ci, 1, 1, ci+3, ci+4, . . . , cn)

→ (c1, . . . , ci−1, ci + ci+3 − 1, ci+4, . . . , cn). (4.4)

Such an operation decreases n by 3 and changes the sign of the matrix M(c1, . . . , cn).
Indeed,

(
c′ −1

1 0

)(
1 −1

1 0

)2 (
c′′ −1

1 0

)

=
(

1 − c′ − c′′ 1

−1 0

)

.

Example 4.8 Simple examples of 3d-dissections different from triangulations are:
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Their quiddities are solutions of (1.2). More precisely,

M(1,1,2,1,2,1,1) = Id, M(1,1,2,1,1,1,1,2,1,1) = −Id.

Remark 4.9 Theorem 4.7 does not imply a one-to-one correspondence between so-
lutions of (1.2) and 3d-dissections. Moreover, such a correspondence does not exist.
Indeed, the quiddity of a 3d-dissection does not characterize it. This means that differ-
ent 3d-dissections may correspond to the same quiddity. For instance, the following
different 3d-dissections of the octagon

have the same quiddity. This observation is due to Alexey Klimenko.

To elucidate the statement of Theorem 4.7, let us separate the cases of −Id and Id.

Corollary 4.10 Given a 3d-dissection of an n-gon, its quiddity (c1, . . . , cn) satisfies
M(c1, . . . , cn) = −Id if and only if the number of subpolygons with an even number
of vertices is even.

4.3 The Total Sum c1 + ···+ cn

An interesting characteristics of a solution is the total sum of the coefficients ci .
Theorem 4.7 implies that the value c1 + · · · + cn = 3n − 6 is maximal. Note that,

for a totally positive solution, the sum of ci ’s is equal to 3n − 6 which is three times
the number of triangles in a triangulation of an n-gon.

Corollary 4.11 Positive integer solutions of the equation M(c1, . . . , cn) = ±Id al-
ways satisfy

c1 + c2 + · · · + cn ≤ 3n − 6.

The total sum can be expressed in terms of the subpolygons of the corresponding
3d-dissection. The following statement is a combination of Corollary 2.3 and Propo-
sition 3.1 of [30], we do not dwell on the proof here.

Proposition 4.12 The total sum of ci ’s in the quiddity of a 3d-dissection of an n-gon
is

c1 + c2 + · · · + cn = 3n − 6
∑

k≤[ n
3 ]

(k − 1)Nk − 6,

where Nk is the number of 3k-gons in the 3d-dissection.
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It follows that the total sum of ci ’s can vary by multiples of 6, and the sign on the
right-hand side of M(c1, . . . , cn) = ±Id alternates.

Corollary 4.13 The solutions of the equation M(c1, . . . , cn) = ±Id can be ranged
by levels:

c1 + c2 + · · · + cn = 3n − 6, (−Id)

= 3n − 12, (Id)

= 3n − 18, (−Id)

. . . (4.5)

5 Walks on the Farey Graph

In this section we show that every solution of the equation M(c1, . . . , cn) = ±Id
admits an embedding into the Farey tessellation. This is a generalization of the con-
struction from Sect. 2.6.

In particular, a totally positive solution corresponding to a triangulation of the n-
gon, defines a monotonously decreasing walk from 1

0 to 0
1 . This is an n-cycle in the

Farey graph that we refer to as a “Farey n-gon”. The Farey tessellation then induces
a triangulation which coincides with the initial triangulation.

A more general solution corresponding to a 3d-dissection of an N -gon defines
(an oriented) walk along a certain Farey n-gon, where n < N . Every such walk is
an N -cycle, and we show that the quiddity of the 3d-dissection of the N -gon can be
recovered from the triangulation of the Farey n-gon.

5.1 Solutions of M(c1, . . . , cn) = −Id and n-Cycles in the Farey Graph

We use the following combinatorial data in the Farey graph.

Definition 5.1 (i) An n-cycle in the Farey graph is a sequence (vi)i∈Z of vertices
(with the cyclic order convention vi+n = vi ), such that vi−1 and vi are connected by
an edge for all i.

(ii) We call a Farey n-gon every n-cycle in the Farey graph such that

v0 = 1
0
, vn−1 = 0

1
, and vi−1 > vi,

for all i = 1, . . . , n − 1.

Example 5.2 The sequence { 1
0 , 2

1 , 3
2 , 4

3 , 17
13 , 64

49 , 111
85 , 158

121 , 47
36 , 30

23 , 13
10 , 22

17 , 9
7 , 5

4 , 1
1 , 0

1 } is
a Farey hexadecagon:
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Let (c1, . . . , cn) be a set of positive integers such that M(c1, . . . , cn) = −Id. Our
next goal is to define the corresponding n-cycle in the Farey graph.

We define a sequence of n vertices in the Farey graph ( r0
s0

, . . . ,
rn−1
sn−1

) that starts

with 1
0 and ends with 0

1 with the following recurrence relations:
{

ri := ciri−1 − ri−2
si := cisi−1 − si−2

(5.1)

and the initial conditions r−1
s−1

= 0
−1 , r0

s0
= 1

0 . We get a sequence of the form

(
r0

s0
, . . . ,

rn−1

sn−1

)
=

(
1
0
,
c1

1
,
c1c2 − 1

c2
,
c1c2c3 − c1 − c2

c2c3 − 1
, . . . ,

0
1

)
. (5.2)

The fact that rn−1
sn−1

= 0
1 follows from the relation M(c1, . . . , cn) = −Id. Indeed, induc-

tively one obtains

M(c1, . . . , ci) =
(

ri −ri−1

si −si−1

)

,

where
ri

si
= ❏c1, . . . , ci ❑

is the sequence of convergents of the negative continued fraction ❏c1, . . . , cn❑. In
particular, −Id = M(c1, . . . , cn) =

( rn −rn−1
sn −sn−1

)
, so rn−1 = 0 and sn−1 = 1, and fur-

thermore rn = −1 = −r0 and sn = 0 = s0. This implies that the sequences defined
by (5.1) are n-antiperiodic, and one obtains a sequence ( ri

si
)i∈Z, such that

ri+n

si+n
= −ri

−si
.
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Proposition 5.3 (i) If (c1, . . . , cn) is a positive solution of M(c1, . . . , cn) = −Id, then
the sequence (5.2) is an n-cycle in the Farey graph.

(ii) If (c1, . . . , cn) is a totally positive solution, then the sequence (5.2) is a Farey
n-gon.

Proof Part (i). For every pair of sequences, (ri) and (si), satisfying the linear recur-
rence (5.1) one obtains constant 2 × 2 determinants

det

(
ri ri−1

si si−1

)

= det

(
−ri−2 ri−1

−si−2 si−1

)

= det

(
ri−1 ri−2

si−1 si−2

)

= · · ·

= det

(
r0 r−1

s0 s−1

)

= −1.

Therefore, ri
si

and ri−1
si−1

are connected by an edge.
Part (ii). The positivity condition (4.2) and the relation risi−1 − ri−1si = −1 imply

ri
si

<
ri−1
si−1

.
Hence the result. !

It turns out that every Farey n-gon gives rise to a totally positive solution, so that
we can formulate the following statement. For details; see [28, Proposition 2.2.1].

Corollary 5.4 Totally positive solutions of the equation M(c1, . . . , cn) = −Id are in
one-to-one correspondence with Farey n-gons.

Remark 5.5 The solution (c1, . . . , cn) can be recovered from the n-gon using the no-
tion of index of a Farey sequence (this notion was defined and studied in [18]). Given
an n-gon ( r0

s0
, r1

s1
, . . . ,

rn−1
sn−1

) in the Farey graph, its index is the n-tuple of integers

ci := ri−1 + ri+1

ri
= si−1 + si+1

si
.

In our terms, the index is nothing else than the quiddity of the triangulation.

5.2 Farey n-Gons and Triangulations

Classical properties on the Farey graph imply the following statement whose proof
can be found in [28].

Proposition 5.6 Every Farey n-gon is triangulated in the Farey tessellation.

In other words, the full subgraph of the Farey graph, containing the vertices of a
Farey n-gon forms a triangulation of the n-gon. Example 5.2 gives an illustration of
this statement.

Therefore from a totally positive solution of M(c1, . . . , cn) = −Id, one obtains
two triangulations: one given by Conway and Coxeter’s correspondence (see Theo-
rem 4.3, Part (ii)), and the other one given by Farey n-gons, see Corollary 5.4.
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Theorem 5.7 ([28], Theorem 1) The Conway and Coxeter triangulation coincides
with the Farey triangulation.

We do not dwell on the proof here (see [28, Sect. 2.2]).
The rational labels on the vertices of the triangulation can be recovered directly

from the triangulation by the following combinatorial algorithm. Note that this is the
same algorithm as in Sect. 2.4, except for step (1), and applied to arbitrary triangula-
tions.

(1) In the triangulated n-gon, label the vertex number 1 by 1
0 and the vertex number

n by 0
1 .

(2) Label all the vertices of the n-gon according to the rule: Whenever two vertices
of the same triangle have been assigned the rationals r ′

s′ and r ′′
s′′ , then the third

vertex receives the label

r ′

s′ ⊕ r ′′

s′′ := r ′ + r ′′

s′ + s′′ .

Example 5.8 Applying the above rule for the rational labelling on the hexadecagon
of Example 4.4, one obtains

which coincides with the Farey hexadecagon of Example 5.2. Note that the triangu-
lation induced from the Farey tessellation coincides with the initial triangulation in
Example 4.4.

Consider a cyclic permutation of (c1, . . . , cn). This gives another solution of
M(c1, . . . , cn) = −Id. Clearly the corresponding triangulations given by Theo-
rem 4.3, Part (ii) are related by a cyclic permutation of the vertices, i.e. a rotation.
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Proposition 5.9 The Farey n-gons corresponding to a cyclic permutation of
(c1, . . . , cn) are related by a cyclic permutation modulo the action of SL(2,Z) by
linear-fractional transformations.

This statement is proved in [28, Proposition 2.2.1].

Example 5.10 Let n = 6, and consider the totally positive solutions (3,1,3,1,3,1)

and (1,3,1,3,1,3). They correspond to the Farey hexagons
(

1
0
,

3
1
,

2
1
,

3
2
,

1
1
,

0
1

)
and

(
1
0
,

1
1
,

2
3
,

1
2
,

1
3
,

0
1

)

and to the triangulated hexagons

respectively. One checks that the first Farey hexagon is obtained from the second one
by the action of the matrix

( 3 −1
1 0

)
.

5.3 3d-Dissections and Walks on the Farey Tessellation

Construction (5.1) can be applied with an arbitrary positive solution of the equation
M(c1, . . . , cN) = ±Id. This leads again to an N -cycle starting at 1

0 and ending at 0
1 .

In the sequence of vertices defining the cycle a vertex may appear several times
and it will be important to distinguish r

s and −r
−s . In other words, we will consider the

twofold covering of the projective line over Q.

Definition 5.11 Given a Farey n-gon, ( 1
0 , r1

s1
, . . . ,

rn−1
sn−1

, 0
1 ) and an integer N ≥ n, an

N -periodic (or antiperiodic) sequence of its vertices, (
rij
sij

)j∈Z, is called

(i) a walk on the n-gon if
rij
sij

and
rij+1
sij+1

are connected by an edge, for all j ;

(ii) a positive walk if it is a walk and rij sij+1 − sij rij+1 > 0, for all j .

In other words, fixing an orientation on the Farey n-gon, a positive walk has the
same orientation.

Example 5.12 (a) A Farey n-gon itself is an n-antiperiodic positive walk. The an-
tiperiodicity is due to the fact that after arrival at rn

sn
= 0

1 , one has to continue with −1
0

in order to keep rnsn+1 − snrn+1 = 1.
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Let us give simple concrete examples of positive walks.
(b) Consider the Farey quadrilateral ( 1

0 , 1
1 , 1

2 , 0
1 ), the 7-periodic walk

( 1
0 , 1

1 , 0
1 , −1

0 , −1
−1 , −1

−2 , 0
−1 ) is positive. The quadrilateral and its Farey triangulation

and the walk are represented by the diagrams:
where the dashed arrow indicates a change of signs in the sequence so that the next
step of the walk is drawn in the copy of the n-gon with opposite signs.

The following 10-antiperiodic walk ( 1
0 , 1

1 , 1
2 , 0

1 , −1
−1 , −1

−2 , 0
−1 , 1

0 , 1
1 , 0

1 ) along the
same quadrilateral is also positive and is represented by

(c) Consider the Farey hexagon ( 1
0 , 1

1 , 2
3 , 1

2 , 1
3 , 0

1 ):

The 9-periodic walk ( 1
0 , 1

1 , 1
2 , 1

3 , 0
1 , −1

−1 , −2
−3 , −1

−2 , 0
−1 ) is positive and is represented

by the diagram
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Recall (cf. Sect. 5.1) that every solution of the equation M(c1, . . . , cN) = ±Id
defines an N -(anti)periodic positive walk on some Farey n-gon, where n ≤ N . The
following theorem is nthe main result of this section.

Theorem 5.13 (i) Every N -(anti)periodic positive walk on a Farey n-gon corre-
sponds to a solution of the equation M(c1, . . . , cN) = ±Id.

(ii) Conversely, every solution of M(c1, . . . , cN) = ±Id can be obtained from an
N -(anti)periodic walk on Farey n-gons with n ≤ N .

Proof Part (i). Consider an N -(anti)periodic positive walk ( ri
si

)1≤i≤N . Since for every
i we have

det

(
ri ri+1

si si+1

)

= risi+1 − ri+1si = 1, (5.3)

both, the numerator and the denominator must satisfy a linear recurrence

Vi+1 = ciVi − Vi−1,

with some N -periodic sequence (ci)i∈Z. The monodromy of this equation is the ma-
trix M(c1, . . . , cN). Since (ri)i∈Z and (si)i∈Z are two (anti)periodic solutions, this
monodromy is equal to ±Id.

Part (ii). Given a solution of the equation M(c1, . . . , cN) = ±Id, applying the
construction (5.2), one obtains a sequence of rationals ( ri

si
)i∈Z, which is periodic or

antiperiodic depending on the sign in the right-hand-side of the equation and satis-
fies (5.3). To prove that this sequence is indeed a walk on a Farey n-gon, one needs
to show that every pair of neighbors ri

si
and rj

sj
(i.e., such points that there is no other

point in the sequence in the interval ( ri
si

,
rj
sj

)) is connected by an edge in the Farey

graph. Suppose that ri
si

and rj
sj

are not connected. Assume that ri
si

<
rj
sj

. Then either
ri+1
si+1

>
rj
sj

, or ri−1
si−1

>
rj
sj

, and both of these points must be connected to ri
si

. Similarly,

either rj+1
sj+1

< ri
sj

, or rj−1
sj−1

< ri
si

, and both of these points must be connected to rj
sj

. This
means that there are crossing edges (geodesics in the Farey tessellation), which is a
contradiction. !

Theorem 5.13 establishes a one-to-one correspondence between positive N -
(anti)periodic walks on the Farey tessellation and solutions of M(c1, . . . , cN) = ±Id.
Theorem 5.13 together with Theorem 4.7 then imply the following.

Corollary 5.14 The sequence (c1, . . . , cN) corresponding to an N -(anti)periodic
positive walk is a quiddity of a 3d-dissection of an N -gon.

Example 5.15 Let us continue Example 5.12.
The 7-periodic walk ( 1

0 , 1
1 , 0

1 , −1
0 , −1

−1 , −1
−2 , 0

−1 ) generates the 7-periodic se-
quence (ci)i∈Z with the period (1,1,1,1,2,1,2). The 10-antiperiodic walk ( 1

0 , 1
1 , 1

2 ,
0
1 , −1

−1 , −1
−2 , 0

−1 , 1
0 , 1

1 , 0
1 ) generates the 10-periodic sequence (ci)i∈Z with the period
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(1,2,1,1,1,1,2,1,1,1). These are quiddities of the 3d-dissections

respectively.
The 9-periodic walk ( 1

0 , 1
1 , 1

2 , 1
3 , 0

1 , −1
−1 , −2

−3 , −1
−2 , 0

−1 ) generates the quiddity of
the following 3d-dissection of a nonagon:

We can say that while walking on a triangulated n-gon, the “invisible hand” draws
a 3d-dissection of an N -gon with N > n.

5.4 The Quiddity of a 3d-Dissection from a Farey Walk

Given an n-gon, ( 1
0 , r1

s1
, . . . ,

rn−1
sn−1

, 0
1 ), and an N -(anti)periodic walk on it (

rij
sij

)j∈Z, it

is natural to ask, how to recover the sequence (c1, . . . , cN) which is a solution of the
equation M(c1, . . . , cN) = ±Id. The answer is as follows.

The integer cij counts the number of triangles in the n-gon that lie on the positive
side of the walk,

with respect to the orientation of the hyperbolic plane. This is a quiddity of a 3d-
dissection of an N -gon, as follows from Theorem 4.7.
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6 PPP: Ptolemy, Plücker and Pfaff

In this section we prove that every solution (c1, . . . , cn) of the equation
M(c1, . . . , cn) = ±Id, with ci positive integers, defines a certain labeling of the diag-
onals of a convex n-gon:

x : V × V → Z,

where V is the set of vertices of the n-gon, usually identified with {1, . . . , n}. More-
over, the set of integers xi,j , satisfies the Ptolemy–Plücker relations. In this sense, the
results discussed in Sect. 2.5 are still valid in the case where no continued fraction
is defined. Note that the totally positive solutions are in a one-to-one correspondence
with the labelings where all xi,j are positive integers. For an arbitrary solution, one
can only guarantee that the shortest diagonals are labeled by positive integers.

This section contains the proofs of the main results. Our main tool is the well-
known polynomial called (Euler’s) continuant. This is the determinant of a tridiagonal
matrix, it gives an explicit formula for the entries of the matrices M(c1, . . . , cn). The
Ptolemy–Plücker relations are deduced from the Euler identity for the continuants.

We conclude the section with the similar “Pfaffian formulas” for the trace
tr(M(c1, . . . , cn)) recently obtained in [9]. The proof is more technical and we do
not dwell on it.

6.1 Continuant = “Continued Fraction Determinant”

The material of this subsection is classical.
Let us think of (c1, . . . , cn) as formal commuting variables, and consider the neg-

ative continued fraction:
rn

sn
= ❏c1, . . . , cn❑, (6.1)

here and below n ≥ 1. Then both the numerator and the denominator are certain
polynomials in ci . It turns out that these polynomials are basically the same.

Definition 6.1 The tridiagonal determinant

Kn(c1, . . . , cn) := det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c1 1

1 c2 1

. . .
. . .

. . .

1 cn−1 1

1 cn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

is called the continuant. We also set for convenience K0 := 1 and K−1 := 0.

The following statement is commonly known. The proof is elementary and we
give it for the sake of completeness.
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Proposition 6.2 The numerator and the denominator of (6.1) are given by the con-
tinuants

{
rn = Kn(c1, . . . , cn),

sn = Kn−1(c2, . . . , cn).
(6.2)

Proof Formula (6.2) follows from the recurrence relation

Vi+1 − ci+1Vi + Vi−1 = 0, (6.3)

with (known) coefficients (ci)i∈Z and (indeterminate) sequence (Vi)i∈Z. Let ri
si

=
❏c1, . . . , ci ❑ be a convergent of the continued fraction (6.1), then both sequences,
(ri)i≥1 and (si)i≥1 satisfy (6.3), with the initial conditions (r1, r2) = (c1, c1c2 − 1)

and (s1, s2) = (1, c2). Indeed, this is equivalent to Proposition 3.1. On the other hand,
the continuants satisfy

Ki(c1, . . . , ci) = ciKi−1(c1, . . . , ci−1) − Ki−2(c1, . . . , ci−2). (6.4)

Hence the result. !

As a consequence of (6.2), we obtain the following formula for the entries of the
matrix M(c1, . . . , cn):

M(c1, . . . , cn) =
(

Kn(c1, . . . , cn) −Kn−1(c1, . . . , cn−1)

Kn−1(c2, . . . , cn) −Kn−2(c2, . . . , cn−1)

)

. (6.5)

Indeed, M(c1, . . . , cn) is the matrix of convergents, cf. Sect. 3.1.

6.2 The Euler Identity for Continuants

The polynomials Kn(c1, . . . , cn) were studied by Euler who proved the following
identity (see, e.g., [17]).

Theorem 6.3 (Euler) For 1 ≤ i ≤ j < k ≤ ℓ ≤ n, one has

Kk−i (ci, . . . , ck−1)Kℓ−j (cj+1, . . . , cℓ)

= Kj−i (ci , . . . , cj−1)Kℓ−i (ci+1, . . . , cℓ)

+ Kℓ−i+1(ci, . . . , cℓ)Kk−j−1(cj+1, . . . , ck−1). (6.6)

We give here an elegant proof due to A. Ustinov [33] that makes use of the Pfaffian
of a skew-symmetric matrix.

Proof Using the notation

xi−1,j+1 := Kj−i+1(ci, . . . , cj ),
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for i < j , consider the 4 × 4 skew-symmetric matrix

Ω =

⎛

⎜⎜⎜⎜⎝

0 xi+1,j xi+1,k xi+1,ℓ

−xi+1,j 0 xj,k xj,ℓ

−xi+1,k −xj,k 0 xk,ℓ

−xi+1,ℓ −xj,ℓ −xk,ℓ 0

⎞

⎟⎟⎟⎟⎠
.

It readily follows from the recurrence relation (6.4), that the matrix Ω has rank 2.
Hence

det(Ω) = (xi+1,j xk,ℓ + xi+1,ℓxj,k − xi+1,kxj,ℓ)
2 = 0,

which is precisely (6.6). !

Remark 6.4 (a) Formula (6.2) allows one to work with continued fractions with ci

assigned to concrete numbers (integers, real, complex, etc.), even when the “naive”
expression (6.1) is not well-defined. This may happen when some denominators van-
ish, for instance if several consecutive coefficients ci, ci+1, . . . are equal to 1.

(b) Replacing the negative continued fraction by a regular one: rn
sn

= [a1, . . . , an],
where n can be even or odd, formula (6.2) is replaced by a similar formula with the
only difference that the continuant is replaced by the determinant

K+
n (a1, . . . , an) := det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a1 1

−1 a2 1

. . .
. . .

. . .

−1 an−1 1

−1 an

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

also known under the name of continuant.
(c) The continuants enjoy many remarkable properties (some of which are listed

in [4, 9, 17]). They were already known to Euler who thoroughly studied the polyno-
mials Kn and, in particular, established Ptolemy-type identities for them. In a sense,
the continuants establish a relationship between the continued fractions and projec-
tive geometry; see [29] and references therein.

(d) Let us mention that equation (6.3) is called the discrete Sturm-Liouville, Hill,
or Schrödinger equation. It plays an important role in many areas of algebra, analysis
and mathematical physics. When the sequence of coefficients is periodic: ci+n = ci ,
for all i, there is a notion of monodromy matrix of (6.3), which is nothing else than
the matrix M(c1, . . . , cn).

6.3 Ptolemy–Plücker Relations

We are ready to explain the connection between solutions of the equation
M(c1, . . . , cn) = ±Id and the Ptolemy–Plücker relations.

Let xi,j , where i, j ∈ {1, . . . , n}, be a set of n2 formal (commuting) variables. In
order to have a clear combinatorial picture, and following [15], we will always think
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of an n-gon with the vertices cyclically ordered by {1, . . . , n}, and the diagonals (i, j)
labeled by xi,j .

We call the Ptolemy–Plücker relations the following system of equations
⎧
⎪⎨

⎪⎩

xi,j xk,ℓ = xi,k xj,ℓ + xi,ℓ xk,j , i ≤ k ≤ j ≤ ℓ,

xi,i = 0,

xi,i+1 = 1.

(6.7)

We will distinguish two special cases, where the set of variables xi,j is either sym-
metric, or skew-symmetric:

xi,j = xj,i or xi,j = −xj,i .

The following statement arose as an attempt to interpret some of the results of [12]
(see also [29]).

Theorem 6.5 Let (c1, . . . , cn) be positive integers. The system (6.7) together with the
symmetry condition xi,j = xj,i has a unique solution such that xi−1,i+1 = ci if and
only if one has M(c1, . . . , cn) = −Id.

Proof We use the following lemma.

Lemma 6.6 If (xi,j ) satisfies the Ptolemy–Plücker relations (6.7) then for all i ≤ j
one has

xi−1,j+1 = det

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ci 1

1 ci+1 1

. . .
. . .

. . .

1 cj−1 1

1 cj

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= Kj−i+1(ci, . . . , cj ), (6.8)

where ci = xi−1,i+1.

Proof We proceed by induction on j .
The induction base is xi−1,i+1 = ci = K1(ci) by definition, and the following cal-

culation of xi−1,i+2.

The Ptolemy–Plücker relation reads cici+1 = xi−1,i+2 + 1, hence xi−1,i+2 =
K2(ci, ci+1).
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The induction step consists of expanding the determinant of (6.8) with respect to
the last column and compare with the Ptolemy–Plücker relation given by the diagram

Both relations are equivalent to (6.4). Hence the lemma. !

Let us show that the Ptolemy–Plücker relations imply M(c1, . . . , cn) = −Id. Ap-
plying Lemma 6.6 to the case |j − i| = n − 1, and using the cyclic numeration of the
vertices of the n-gon, we get

xi,i−1 = Kn(xi, . . . , xi+n−1) = 1,

provided xi,j = xj,i . Then, again implying (6.7), one readily gets

Kn+1(xi, . . . , xi+n) = 0, Kn+2(xi, . . . , xi+n+1) = −1.

We conclude by (6.5), that M(c1, . . . , cn) = −Id.
Conversely, assume that M(c1, . . . , cn) = −Id. Starting from xi,i = 0, xi,i+1 = 1

and then labeling the diagonals of the n-gon using (6.8) one obtains a solution of
(6.7) using the Euler identities (6.3) for the continuants. !

A similar computation (that we omit) allows one to prove the following skew-
symmetric counterpart of Theorem 6.5.

Theorem 6.7 Let (c1, . . . , cn) be positive integers. The system (6.7) together with the
skew-symmetry condition xi,j = −xj,i has a unique solution such that xi−1,i+1 = ci

if and only if M(c1, . . . , cn) = Id.

Remark 6.8 Let us mention that the coordinates xi,j satisfying (6.7) together with
the skew-symmetry condition can be identified with the Plücker coordinates of the
Grassmannian G2,n of 2-dimensional subspaces in the n-dimensional vector space.
The coordinate ring of G2,n is one of the basic examples of cluster algebras of Fomin
and Zelevinsky [14] (for details; see [15]). A description of the relationship between
Coxeter’s frieze patterns and cluster algebras can be found in [26].

6.4 Relation to 3d-Dissections

So far in this section we considered formal variables xi,j . Assigning concrete inte-
gral values to these variables, one has to deal with integer solutions of the equation
M(c1, . . . , cn) = ±Id. In particular, Theorems 4.7, 6.5 and 6.7 imply the following
relation to 3d-dissections (see Sect. 4.2).
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Corollary 6.9 Given an n-tuple of positive integers (c1, . . . , cn), start labeling the
diagonals of an n-gon by

xi,i = 0, xi,i+1 = 1, xi−1,i+1 = ci,

for all 1 ≤ i ≤ n, and then continue using the Ptolemy–Plücker relations. This pro-
cedure is consistent, and there exists a set of integers xi,j and satisfying (6.7), if and
only if (c1, . . . , cn) is a quiddity of a 3d-dissection.

6.5 Traces and Pfaffians

Let us give one more determinant formula. We are interested in calculating the trace
of the matrix M(c1, . . . , cn). It follows from (6.5) that this trace is equal to the differ-
ence of two continuants:

tr
(
M(c1, . . . , cn)

)
= Kn(c1, . . . , cn) − Kn−2(c2, . . . , cn−1).

It turns out that the square of this polynomial is equal to the determinant of a
2n × 2n matrix.

Theorem 6.10 ([9, 10]) The trace of the matrix M(c1, . . . , cn) is equal to the square
root of the determinant of the following skew-symmetric 2n × 2n matrix

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c1 1
1 c2 1

. . .
. . .

. . .

. . .
. . . 1

−1 1 cn

−c1 −1 1

−1
. . .

. . .

. . .
. . .

−1
−1 −cn −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
trM(c1, . . . , cn)

)2
.

(6.9)

In other words, tr(M(c1, . . . , cn)) is the Pfaffian of the matrix on the left-hand-side
of (6.9). We refer to [9] for a proof of this result. Let us mention that formula (6.9) re-
flects a relation to symplectic geometry; see [10]. More precisely, the 2n × 2n matrix
in (6.9) appears as the Gram matrix of the symplectic form in the standard symplectic
space evaluated on a Lagrangian configuration. This relation deserves further inves-
tigation.
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Example 6.11 In the case n = 3 one can easily check directly that

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 c1 1 0

0 0 0 1 c2 1

−1 0 0 0 1 c3

−c1 −1 0 0 0 1

−1 −c2 −1 0 0 0

0 −1 −c3 −1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (c1c2c3 − c1 − c2 − c3)
2,

which is nothing other than the square of the trace of M(c1, c2, c3).

Remark 6.12 If one wants to check (6.9) with the computer and forgets to put the
minus sign, here is what one will obtain for n ≥ 2:

det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 c1 1
1 c2 1

. . .
. . .

. . .

. . .
. . . 1

1 1 cn

c1 1 1

1
. . .

. . .

. . .
. . .

1
1 cn 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (−1)n
((

trM(c1, . . . , cn)
)2 − 4

)
. (6.10)

Note that the expression in the right-hand-side of (6.10) is the discriminant of the
characteristic polynomial of M(c1, . . . , cn). It will appear again in Sect. 7.1.

7 Minimal Presentation of PSL(2,Z)

The group SL(2,Z) (and thus PSL(2,Z)) is generated by two elements, and a stan-
dard choice of generators is either {S,R}, {S,U}, or {U,R}, where

S =
(

0 −1

1 0

)

, R =
(

1 1

0 1

)

, U =
(

1 −1

1 0

)

.

A natural question is how to make such a presentation canonical.
It is a simple and well-known fact that every element A ∈ PSL(2,Z) can be pre-

sented in the form A = M(c1, . . . , ck) where ci are positive integers. The above ques-
tion is equivalent to the existence of a canonical presentation in this form. This ques-
tion was considered and answered (modulo conjugation of A) in [22, 24, 34]. The
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coefficients (c1, . . . , ck) are obtained as the (minimal) period of the negative contin-
ued fraction of a fixed point of A. This fixed point is a quadratic irrationality.

We show the existence and uniqueness of the “minimal presentation”, A =
M(c1, . . . , ck), with ci ≥ 1, and k is the smallest possible. The coefficients (c1, . . . , ck)

of this presentation are calculated via expansion of a rational number (the quotient of
largest coefficients of A). This statement looks quite surprising since it recovers the
period of a quadratic irrationality from a continued fraction of a rational.

7.1 Parametrizing the Conjugacy Classes in PSL(2,Z)

Let us outline the history of the problem discussed in this section. The matri-
ces M(c1, . . . , ck), with ci ≥ 2 for every i, were used to parametrize conjugacy
classes of hyperbolic elements of PSL(2,Z) (recall that A ∈ PSL(2,Z) is hyperbolic
if | trA| ≥ 3).

Consider the real projective line RP1, which is identified with R ∪ {∞} by choos-
ing an affine coordinate x. The action of PSL(2,Z) on RP1 is given by linear-
fractional transformations, viz

A =
(

a b

c d

)
: x → ax + b

cx + d
.

When A is hyperbolic, it has two fixed points x± ∈ RP1:

x± = a − d ±
√

(a + d)2 − 4
2c

.

Note that the expression (trA)2 − 4 appeared in (6.10). When choosing the represen-
tative A ∈ PSL(2,Z) with trA > 0, the point x+ has the property that, for all x ≠ x−,
Am(x) tends to x+, when m → ∞. The point x+ is thus called the attractive fixed
point of A.

Since x± are quadratic irrationals, the corresponding continued fractions are pe-
riodic (starting from some place) by Lagrange’s theorem; see, e.g., [6, 31]. Consider
the negative continued fraction expansion of the attractive fixed point:

x+ = ❏c1, . . . , cℓ, cℓ+1, . . . , cℓ+k ❑,

where (cℓ+1, . . . , cℓ+k) is the minimal period of the continued fraction.
The statement explained in [34, pp.90–92] can be formulated as follows.

Proposition 7.1 Every hyperbolic element A ∈ PSL(2,Z) is conjugate to
M(cℓ+1, . . . , cℓ+k), and the k-tuple (cℓ+1, . . . , cℓ+k), defined modulo cyclic permu-
tations, characterises the conjugacy class of A uniquely.

We refer to [22, 34] and [24] for a detailed and very clear treatment of this state-
ment and its applications.
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Example 7.2 Consider the matrix A =
( 10 3

3 1

)
, whose attractive fixed point is x+ =

3+
√

13
2 . It’s continued fraction expansion reads x+ = [3,3] = ❏4, 2, 2, 5❑. According

to Proposition 7.1, the matrix A must be conjugate to

M(2, 2, 5) =
(

13 −3
9 −2

)
,

and, indeed, one checks that A = M(4)M(2, 2, 5)M(4)−1.

Proposition 7.1 and its impact for number theory, see, e.g., [13] and references
therein, is the main motivation for us to study minimal presentations of elements
of PSL(2,Z). When representing a matrix, the condition ci ≥ 2, for all i, cannot
always be satisfied (many interesting matrices need 1’s at the ends of their minimal
presentations).

7.2 Minimal Presentation

Every element A ∈ PSL(2,Z) can be written in the form A = M(c1, . . . , ck), where
ci ≥ 1. We are interested in the shortest presentations of this form. It turns out that
the coefficients ci can be recovered from the coefficients of A, without expansions of
quadratic irrationals.

Theorem 7.3 (i) The presentation A = M(c1, . . . , ck) with positive integer coeffi-
cients ci is unique, provided k is the smallest possible.

(ii) If A =
( a −b

c −d

)
where a, b, c, d > 0 and a > b, then the coefficients (c1, . . . , ck)

are those of the continued fraction a
c = ❏c1, . . . , ck ❑.

We also have the following “minimality criterion”.

Proposition 7.4 If an element A of PSL(2,Z) is written in the form A =
M(c1, . . . , ck), then this is the minimal presentation of A, if and only if ci ≥ 2, except
perhaps for the ends of the sequence, i.e., for c1, or c1, c2 and ck , or ck−1, ck .

Before giving the proof of Theorem 7.3 and Proposition 7.4, let us consider several
examples and corollaries.

Part (ii) of Theorem 7.3 covers all different cases of elements of PSL(2,Z), mod-
ulo multiplication by R and S from the right and from the left. For instance, the
following statement treats the case of all matrices with positive coefficients.

Corollary 7.5 Let A =
(

a b
c d

)
be an element of PSL(2,Z) with a, b, c, d > 0, one has

the following two cases:
(i) if a > b, then the minimal presentation of A is

A = M(c1, . . . , ck,2,1,1), (7.1)

where a
c = ❏c1, . . . , ck ❑; and the conjugacy class of A is parametrized by (c1 + 1,

c2, . . . , ck);
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(ii) if a < b, then the minimal presentation of A is

A = M(c1, . . . , ck−1, ck + 1, 1,1) (7.2)

where b
d = ❏c1, . . . , ck ❑; and the conjugacy class of A is parametrized by (c1 +

ck, c2, . . . , ck−1).

Proof Part (i). After multiplication from the right by R−1, the matrix AR−1 satisfies
the conditions of Part (ii) of Theorem 7.3. One then uses that R−1 = M(1,1,2,1)

and M(2,1,2,1) = Id (up to a sign, i.e., in PSL(2,Z)). Hence (7.1). Next, one has

RAR−1 = M(2,1,1, c1, . . . , ck) = M(c1 + 1, c2, . . . , ck).

Part (ii). The matrix A becomes as in Part (ii) of Theorem 7.3, when multiplied
from the right by S = M(1,1,2,1,1). Next, since Ra = M(a + 1,1,1), one has

RckAR−ck = M(ck + 1,1,1, c1, . . . , ck−1) = M(c1 + ck, c2, . . . , ck−1).

Hence the result. !

Remark 7.6 Comparing (7.1) and (7.2) to somewhat similar known formulas in terms
of the positive continued fractions (see [23], Theorem 7.14), we observe that they are
quite different. Indeed, formulas (7.1) and (7.2) use the “dominant” (largest) coeffi-
cients of A, while the formulas in [23] use the smallest coefficients.

Rewriting (7.1) and (7.2) in terms of the standard generators, and using Proposi-
tion 3.4, we have the following decomposition.

Corollary 7.7 Let A =
(

a b
c d

)
be an element of PSL(2,Z) with a, b, c, d > 0. Its

expression in terms of the standard generators is:
(i) if a > b, then

A = Rc1S Rc2S · · ·SRckSR,

= Ra1(UR)a2 · · ·Ra2m−1(UR)a2m

where a
c = [a1, . . . , a2m] = ❏c1, . . . , ck ❑;

(ii) if a < b, then

A = Rc1S Rc2S · · ·SRck ,

= Ra1(UR)a2 · · ·Ra2m−1(UR)a2m−1R

where b
d = [a1, . . . , a2m] = ❏c1, . . . , ck ❑.

Together with Proposition 3.4, Theorem 4.7 implies an explicit description of re-
lations in the group PSL(2,Z). Every element A ∈ PSL(2,Z) can be written in terms
of the generators R and S (see formula (3.5)) as follows

A = Rc1S Rc2S · · ·RcnS,
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where ci are some positive integers. The following statement is actually equivalent to
Theorem 4.7.

Corollary 7.8 One has

Rc1S Rc2S · · ·RcnS = Id

in PSL(2,Z), if and only if (c1, . . . , cn) is the quiddity of a 3d-dissection of an n-gon.

Note that all of the above relations follow from the following two:

S2 = Id, (RS)3 = Id,

since PSL(2,Z) is known to be isomorphic to the free product of two cyclic groups
with the generators S and RS, namely PSL(2,Z) ≃ (Z/2Z) ∗ (Z/3Z).

Example 7.9 We go back to Example 7.2.
(a) Consider first the matrix A′ =

( 13 −9
3 −2

)
. It satisfies the condition from Part (ii)

of Theorem 7.3, and, indeed, we see that

13
3

= [4,3] = ❏5,2,2❑.

One then checks that A′ = M(5,2,2).
(b) The matrix A =

( 10 3
3 1

)
is as in Corollary 7.5, Part (i). Since 10

3 = [3,3] =
❏4,2,2❑, one easily checks that A = M(4,2,2,2,1,1), in accordance with (7.1).

(c) The matrix A =
( 3 10

2 7

)
is as in Corollary 7.5, Part (ii). Since 10

7 = [1,2,2,1] =
❏2,2,4❑, one checks that A = M(2,2,5,1,1), and the conjugacy class of A is thus
parametrized by (6,2). Note that this is the period of the negative continued fraction
of the attractive fixed point of A:

x+ = −1 +
√

6 = ❏2,2,6❑.

7.3 Proof of Theorem 7.3 and Proposition 7.4

Theorem 7.3 Part (i). Consider the following two “local surgery” operations.

(1) Whenever the n-tuple (c1, . . . , ck) contains a fragment ci,1, ci+2 with ci, ci+2>1,
the following “Conway-Coxeter operation” removes 1 and decreases the two
neighboring entries by 1:

(c1, . . . , ci, 1, ci+2, . . . , ck) 0→ (c1, . . . , ci − 1, ci+2 − 1, . . . , ck). (7.3)

(2) Whenever the n-tuple (c1, . . . , ck) contains a fragment ci, 1, 1 , ci+3 (with arbi-
trary ci, ci+3), the following operation reduces k by 3 producing the (k−3)-tuple

(c1, . . . , ci, 1, 1, ci+3, . . . , ck) 0→ (c1, . . . , ci + ci+3 − 1, . . . , ck). (7.4)
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Note that these operations have already been used in Sects. 4.1 and 4.2. It has
already been checked, that these operations preserve the element M(c1, . . . , ck) of
PSL(2,Z).

Given an arbitrary presentation A = M(c1, . . . , ck) with positive integers ci , ap-
plying the operations (7.3) and (7.4) when this is possible (and in arbitrary order), the
k-tuple (c1, . . . , ck) can be reduced to one of the case ci ≥ 2, except perhaps for c1,
or c1, c2 and ck , or ck−1, ck .

By multiplying from the right by M(1) or M(1, 1), we can furthermore normalize
the sequence (c1, . . . , ck) in such a way that it contains at most one entry 1 at the
end, i.e., that ck−1 ≥ 2. This implies that the continued fraction ❏c1, . . . , ck ❑ is well
defined.

Assume there are two different presentations of the same element,

A = M(c1, . . . , ck) = M(c′
1, . . . , c

′
k),

with positive integers ci and minimal k, so that the continued fraction ❏c′
1, . . . , c

′
k ❑ =

❏c1, . . . , ck ❑ is also well defined. Then, without loss of generality, we can assume that
c1 > c′

1. Since, for k ≥ 3, one has ❏c1, . . . , ck ❑ > c1 − 1 and ❏c′
1, . . . , c

′
k ❑ < c′

1, this
implies that ❏c1, . . . , ck ❑ > ❏c′

1, . . . , c
′
k ❑, which contradicts the assumption.

Theorem 7.3 Part (ii). The positivity of the coefficients of A and the condition
detA = 1 imply that a

c < b
d . We give a geometric argument using results of Sect. 2.

The rationals a
c < b

d are linked by an edge in the Farey graph and one has the follow-
ing two possible local pictures in T a

c
∪ T b

d
.

The cases split as follows: in the left case a < b whereas in the right case a > b. In
the right case b

d is the previous convergent in the expansion of a
c as negative continued

fraction. In other words, if a
c = ❏c1, . . . , ck ❑ then b

d = ❏c1, . . . , ck−1 ❑; which gives
A = M(c1, . . . , ck) according to Proposition 3.1.

Theorem 7.3 is proved.
To prove Proposition 7.4, first note that the operations (7.3) and (7.4) allow one

reduce any presentation A = M(c1, . . . , ck) to the form with ci ≥ 2, except perhaps
for the ends of the sequence. Hence the “only if” part. The proof of the “if” part is
similar to that of Theorem 7.3, Part (i).
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Fig. 2 The triangulation TA

7.4 Minimal Presentation and Farey n-Gon

Given a matrix A ∈ PSL(2,Z), we explain how to recover the coefficients (c1, . . . , ck)

in a combinatorial manner. More precisely, the coefficients can be interpreted as the
quiddity of some triangulated polygon.

We focus on the case of matrices of the form

A =
(

a −b

c −d

)

with a, b, c, d > 0. Such a matrix A defines two (positive) rationals a
c < b

d that are
linked by an edge in the Farey tessellation. Similarly to what was done in Sect. 2.6,
one draws two vertical lines from a

c and b
d in the Farey tessellation and collects all

the triangles crossed by these lines. One thus obtains a triangulated Farey n-gon that
we denote TA.

Note that TA is the union T a
c

∪ T b
d

of the triangulations defined in Sect. 2.2.
We label the vertices of TA in decreasing order so that

v1 = 1
0
, . . . , vk = b

d
, vk+1 = a

c
, . . . , vn = 0

1
,

and we denote by (c1, . . . , ck) the quiddity sequence attached to the first k vertices.
One has

A = M(c1, . . . , ck).

Example 7.10 For the matrix A =
( 2 −5

1 −2

)
, we obtain the triangulation of Fig. 2.

The corresponding Farey hexagon is ( 1
0 , 3

1 , 5
2 , 2

1 , 1
1 , 0

1 ) and the triangulation TA

can be pictured as follows:
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The quiddity sequence at the vertices 1
0 , 3

1 , 5
2 is (3,2,1) so that we deduce

A =
(

2 −5
1 −2

)
= M(3,2,1).

7.5 Further Examples: Cohn Matrices

Let us give more examples of interesting matrices.

Example 7.11 (a) Recall that an element A ∈ PSL(2,Z) is called parabolic if
tr(A) = 2; a parabolic element is conjugate to Ra with a ∈ Z. The parabolic element
Ra , for a ≥ 0 has the following minimal presentation Ra = M(a + 1,1,1), while the
minimal presentations of La and R−a are as follows:

La =
(

1 0
a 1

)
= M(1,2, . . . ,2︸ ︷︷ ︸

a

,1,1), R−a =
(

1 −a

0 1

)
= M(1,1,2, . . . ,2︸ ︷︷ ︸

a

,1).

Note that the above equality hold in PSL(2,Z), i.e., the matrix equalities are up to
a sign. The elements La and R−a belong to the same conjugacy class parametrized
by (2,2, . . . ,2). The element Ra belongs to a different conjugacy class.

(b) The minimal presentation of the continued fraction matrix M+(a1, . . . , a2m) is
given by (3.7).

(c) The famous Cohn matrices are the triples of matrices, (A,AB,B) in which the
triples of Markov numbers appear both, as right upper entry, and as 1

3 of the traces. It
is known (see [2]) that such matrices are enumerated by (n, t), where n ∈ Z and t is
a rational 0 ≤ t ≤ 1. The initial triple of Cohn matrices given by

A(n) =
(

n 1

3n − n2 − 1 3 − n

)

and B(n) := A(n)A(n + 1) corresponds to the Markov triple (1,5,2) = ( 1
3 tr(A),

1
3 tr(AB), 1

3 tr(B)). Other triples of Cohn matrices are given by the products of the
matrices from the initial triple, encoded by a tree isomorphic to the Farey (or Stern–
Brocot) tree of rationals in [0,1], starting from the triple (0, 1

2 ,1).
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The minimal presentation of the initial matrices with n ≥ 2 is

A(n) = M(1,1, n − 1,2, . . . ,2︸ ︷︷ ︸
n

,1,1),

B(n) = M(1,1, n − 1,3,2, . . . ,2︸ ︷︷ ︸
n

,1,1),

A(n)B(n) = M(1,1, n − 1,2,4,2, . . . ,2︸ ︷︷ ︸
n

,1,1).

Furthermore,

A(n)2B(n) = M(1,1, n − 1,2,3,4,2, . . . ,2︸ ︷︷ ︸
n

,1,1),

A(n)B(n)2 = M(1,1, n − 1,2,4,2,4,2, . . . ,2︸ ︷︷ ︸
n

,1,1),

etc.
We see that all of these matrices with different n are conjugate to each other, the

conjugacy classes of A and B being parametrized by (3) and (4,2), respectively.

7.6 The 3d-Dissection of a Matrix

We apply Theorem 7.3 in order to associate a 3d-dissection to every element A ∈
SL(2,Z). Our construction is as follows.

Writing A and A−1 in the canonical minimal form A = M(c1, . . . , ck) and A−1 =
M(c′

1, . . . , c
′
ℓ), one obtains a (k+ℓ)-tuple of positive integers (c1, . . . , ck, c′

1, . . . , c
′
ℓ).

Since

M(c1, . . . , ck, c′
1, . . . , c

′
ℓ) = M(c1, . . . , ck)M(c′

1, . . . , c
′
ℓ) = Id,

Theorem 4.7 implies that this is a quiddity of some 3d-dissection.

Example 7.12 (a) The matrix S = M(1,1,2,1,1) corresponds to the quiddity of the
hexagonal dissection of a decagon:

(b) For the matrix R one has R = M(2,1,1) (up to a sign) and R−1 =
M(1,1,2,1). This leads to the dissection of a heptagon:
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(c) Consider the following elements

A =
(

2 1
1 1

)
, B =

(
5 2
2 1

)

which are the simplest Cohn matrices (with n = 2). One has the following presenta-
tions:

A = M(2,2,1,1), B = M(3,2,2,1,1),

A−1 = M(1,1,3,1), B−1 = M(1,1,4,2,1).

The corresponding quiddities are those of the dissected octagon and decagon:
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