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Coxeter’s frieze patterns at the crossroads of algebra,
geometry and combinatorics

Sophie Morier-Genoud

Abstract

Frieze patterns of numbers, introduced in the early 1970s by Coxeter, are currently attracting
much interest due to connections with the recent theory of cluster algebras. The present survey
aims to review the original work of Coxeter and the new developments around the notion of
frieze, focusing on the representation theoretic, geometric and combinatorial approaches.
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Introduction

Frieze patterns were introduced by Coxeter in the early 1970s [25]. They are arrays of numbers
where neighbouring values are connected by a local arithmetic rule. Coxeter introduces these
patterns to understand Gauss’ formulas for the pentagramma mirificum and their possible gen-
eralizations. A remarkable property of friezes is the glide symmetry, implying their periodicity.
Coxeter establishes many interesting connections between friezes and various objects: cross
ratios, continued fractions, Farey series... Frieze patterns of positive integers are of special inter-
est. Conway and Coxeter [23] discover a one-to-one correspondence between friezes of positive
integers and triangulations of polygons. This reveals rich combinatorics around frieze patterns.

Frieze patterns appear independently in the 1970s in a different and disconnected context of
quiver representations. It turns out that the Auslander–Reiten (AR) quiver leads to a variant
of the Coxeter friezes, with the local arithmetic rule being an additive analogue of Coxeter’s
unimodular rule. The generalization of Coxeter’s unimodular rule on AR quivers was found
recently by Caldero and Chapoton [22].

A recent revival of friezes is due to their relation to the Fomin–Zelevinsky theory of cluster
algebras, beautiful and unexpected connections with Grassmannians, linear difference equations
and moduli spaces of points in projective spaces. These connections explain recent applications
of friezes in integrable systems.

New directions of study and new developments of the notion of frieze have been recently and
are currently investigated. There are mainly three approaches for the study of friezes:

(i) a representation theoretical and categorical approach, in deep connection with the
theory of cluster algebras, where entries in the friezes are rational fractions;
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(ii) a geometric approach, in connection with moduli spaces of points in projective space
and Grassmannians, where entries in the friezes are more often real or complex
numbers;

(iii) a combinatorial approach, focusing on friezes with positive integer entries.

The present article aims to give an overview of the different approaches and recent results
about the notion of friezes. The article is organized in four large independent sections and a
short conclusion.

In § 1, we review the original work of Coxeter on frieze patterns [25], and discuss some
immediate extensions of the results, concerning algebraic properties of friezes and links to
projective geometry.

In § 2, we present a generalization of friezes based on representations of quivers and the
theory of cluster algebras, introduced in [6, 22].

In § 3, we present the variants of SLk-tilings and SLk-friezes introduced in [14]. We review
results from [63] where the space of SLk-friezes is identified with the moduli space of projective
polygons and the space of superperiodic difference equations.

Section 4 focuses on friezes of positive integers and their relations with different combinatorial
models. In particular, we give the Conway–Coxeter correspondence with triangulations of
polygons [23] and present some generalizations.

The final section lists the different variants of friezes appearing in the literature and some
open questions.

1. Coxeter’s frieze patterns

Coxeter’s frieze patterns [25] are arrays of numbers satisfying the following properties:

(i) the array has finitely many rows, all of them being infinite on the right and left;
(ii) the first two top rows are a row of 0s followed by a row of 1s, and the last two bottom

rows are a row 1s followed by a row of 0s (when representing friezes, one often omits the
bordering top and bottom rows of 0s);

(iii) consecutive rows are displayed with a shift, and every four adjacent entries a, b, c, d
forming a diamond

b
a d

c

satisfy the unimodular rule: ad − bc = 1.

The number of rows strictly between the border rows of 1s is called the width of the frieze
(we will use the letter m for the width). The following array (1) is an example of a frieze
pattern of width m = 4, containing only positive integer numbers:

row 0 1 1 1 1 1 1 1 · · ·
row 1 · · · 4 2 1 3 2 2 1
row 2 3 7 1 2 5 3 1 · · ·
... · · · 5 3 1 3 7 1 2
row m 3 2 2 1 4 2 1 · · ·
row m + 1 · · · 1 1 1 1 1 1 1

(1)

The definition allows the frieze to take its values in any ring with unit. Coxeter studies the
properties of friezes with entries that are positive real numbers (apart from the border rows of
0s), and with a special interest in the case of positive integers. The combinatorics related to
friezes with positive integer entries will be presented in § 4.
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Figure 1. Selfpolar pentagram on the sphere (sides are great circles, angles at vertices Ai are
right angles). The quantities ci := tan2 αi satisfy the relations (2).

The condition of positivity is quite strong but guarantees a certain genericity of the frieze.
We will work with a less restrictive condition. Throughout this section, we will consider friezes
with real or complex entries, and we will assume that they satisfy the following extra condition:

(iv) every adjacent 3 × 3-submatrix in the array has determinant 0.

Friezes satisfying condition (iv) are called tame [14]. Coxeter’s friezes with no zero entries
(in particular friezes with positive numbers) are all tame. The statements established in [25]
for the friezes with positive entries still hold for tame friezes (the proofs can be easily adapted).

1.1. Pentagramma mirificum and frieze patterns of width 2

The first example of frieze pattern given by Coxeter is the frieze of width 2 made out of the
Gauss formulas for the pentagramma mirificum. The pentagramma mirificum is a pentagram
drawn on a unit sphere with successively orthogonal great circle arcs (see Figure 1). If we
denote by α1, . . . , α5 the length of the side arcs of the inner pentagon, then we obtain the
following relations for ci = tan2(αi):

cici+1 = 1 + ci+3, (2)

where the indices are taken modulo 5. In other words, the quantities ci related to the
pentagramma mirificum form a frieze pattern of width 2:

1 1 1 1 1 1 · · ·
· · · c1 c2 c3 c4 c5 c1

c3 c4 c5 c1 c2 c3 · · ·
· · · 1 1 1 1 1 1

(3)

Moreover, Gauss observed that the first three equations of (2), that is, for i = 1, 2, 3, imply the
last two, that is, for i = 4, 5. This observation implies the 5-periodicity of any frieze pattern
of width 2. It seems that Coxeter’s motivation in the study of friezes was to generalize this
situation.

Given five points p1, p2, p3, p4, p5 on the (real or complex) projective line, with indices taken
cyclically (pi+5 = pi), we form the five cross ratios

ci = [pi+1, pi+2, pi+3, pi+4] =
(pi+4 − pi+1)(pi+3 − pi+2)
(pi+4 − pi+3)(pi+2 − pi+1)

.

Assume that two consecutive points, taken cyclically, are distinct (this guarantees that none
of the coefficients ci are infinity). Then, one checks that the above cross ratios satisfy the
relations (2).
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Thus, Coxeter friezes of width 2, with non-zero values, parametrize the moduli space

M0,5 := {pi ∈ P1, pi+5 = pi, pi �= pj}/PGL2.

Consider the following frieze of width 2, with a given diagonal of non-zero variables x1, x2, that
we compute by applying the unimodular rule:

· · · 1 1 1 1 1 1 · · ·
x1

x2 + 1
x1

x1 + 1
x2

x2
1 + x2 + x1

x2x1
x1

· · · x2
x1 + x2 + 1

x1x2
x1

1 + x2

x1

1 + x1

x2
x2 · · ·

1 1 1 1 1 1 1
(4)

One observes that the entries are all Laurent polynomials in x1, x2. In other words, in the
pattern (3), every entry can be expressed as a Laurent polynomial in any two fixed entries
(ci, ci+3). Therefore, the frieze pattern provides five charts

(C∗)2 −→ M0,5,

with transition functions written as Laurent polynomials. These charts cover a slightly bigger
space than M0,5, in which non-consecutive points may coincide, which is denoted by:

M̂0,5 := {pi ∈ P1, pi+5 = pi, pi �= pi+1}/PGL2.

Indeed, since consecutive points are distinct there is necessarily a couple of non-zero cross
ratios of the form (ci, ci+3). Conversely, given a frieze pattern (3), with a non-zero diagonal,
say (c1, c4), one can recover five points of P1 whose associated cross ratios are c1, . . . , c5 by
quotienting two consecutive diagonals

0
1
,

1
c1

,
c2

c4
,

c5

1
,

1
0
.

Frieze patterns of width m will generalize this situation to configurations of m + 3 points
(see Subsection 1.8).

Remark 1.1. Renaming the variables as x1 = c1, x2 = c4, x3 = c2, x4 = c5, x5 = c3 lead
to the famous pentagon recurrence:

xi−1xi+1 = 1 + xi. (5)
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It is well known, and easy to establish, that every sequence (xi)i∈Z with no zero values satisfying
the recurrence (5), is 5-periodic; for details see, for example, [34].

1.2. Periodicity and glide symmetry

The frieze pattern of width 2 given in (4) reveals two important properties of friezes: periodicity
and invariance under glide reflection. This is a general fact.

Theorem 1.2 [25]. Rows in a frieze of width m are periodic with period dividing
m + 3.

The period n = m + 3 is called the order of the frieze in [25]. This periodicity is actually
implied by a stronger symmetry. Recall that a glide reflection is the composition of a reflection
about a line and a translation along that line.

Theorem 1.3 [25]. Friezes are invariant under a glide reflection with respect to the
horizontal median line of the pattern.

In other words, friezes consist of a fundamental domain, for instance triangular, that
is reflected and translated horizontally. Extending the pattern (1), one observes this
property.

Notation 1.4. We label the elements in a frieze by using couples of indices (i, j) ∈ Z × Z

such that i � j � i + m − 1, where m is the width. By periodicity, the indices are often
considered modulo n = m + 3. We denote by I ⊂ Z2 the set of indices. When representing
a frieze in the plane, the first index i remains constant on a diagonal directed South-East, and
the second index j constant on a North-East diagonal.

· · · 1 1 1 1 1 1 · · ·
e1,1 e2,2 · · · ei,i · · · en,n e1,1

· · · e1,2 e2,3 · · · ei,i+1 · · · en,1 · · ·
en,2 e1,3 e2,4 · · · ei,i+2 · · · en,2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 1 1 1 1 1 1

(6)

By extension, we set ei,i−1 = ei,i+m = 1 and ei,i−2 = ei,i+m+1 = 0, for all i.
From now on, friezes are considered as evaluations e : I → A, where A is a commutative ring

with unit. Let us stress on that the frieze (ei,j) and the frieze (e′i,j) related by e′i,j = ei+1,j+1

have the same representations in the plane but are considered as two different friezes since the
mappings I → A are different.



900 SOPHIE MORIER-GENOUD

1.3. Linear recurrence relations

A key feature of Coxeter frieze patterns is that the diagonals satisfy linear recurrence relations
with coefficients given by the entries of the first row of the pattern. For a frieze of width
m = n − 3, we denote by a1, a2, . . . , an the cycle of n consecutive entries on the first row, so
that ei,i = ai.

Proposition 1.5 [25]. For any fixed j, the sequence of numbers Vi := ej,i along the jth
South-East diagonal satisfies,

Vi = aiVi−1 − Vi−2, (7)

for all i.

This statement is easy to establish using the unimodular rule, and is a key point in the
proof of Theorem 1.3; see also [26]. This also makes connections between friezes and continued
fractions [25].

1.4. Polynomial entries as continuants

Consider a frieze of width m = n − 3 with first row consisting in the cyclic sequence
a1, a2, . . . , an (so that ei,i = ai).

1 1 1 1 1 1
a1 a2 · · · an a1

· · · a1a2 − 1 a2a3 − 1 · · · ana1 − 1 · · ·
· · · · · · · · · · · · · · ·

1 1 1 1 1 1

If one uses the unimodular rule in the frieze to compute the values row after row, then one
would expect to obtain rational functions in variables ai. However, the entries are actually
polynomials in variables ai (this is a consequence of Proposition 1.5).

Theorem 1.6 [25]. All entries in the frieze are polynomials in the entries ai of the first
row; explicit expressions are given by the following determinants:

ei,j =

∣∣∣∣∣∣∣∣∣∣∣

ai 1
1 ai+1 1

. . .
. . .

. . .

1 aj−1 1
1 aj

∣∣∣∣∣∣∣∣∣∣∣
. (8)

An arbitrary n-periodic sequence (ai) does not define a frieze pattern with ei,i := ai, for all
i. There is no guarantee that the bottom boundary condition, ei,i+n−3 = 1 will be satisfied.
Three polynomial equations in variables ai have to be satisfied in order to define a frieze. These
equations can be written in terms of the determinants (8), cf. Theorem 1.15.

Remark 1.7. The determinants (8) appear in the theory of continuants; see [67]. They
are also a first example of André’s determinants used to solve linear finite difference equations
[2, 50]. Note also that in the case of constant coefficients ai = 2x, the determinant (8) of order
k defines the kth Chebyshev polynomial of second kind Uk(x).
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1.5. Laurent phenomenon

Given a frieze of width m, denote by x0, x1, . . . , xm+1 the entry on the 0th South-East diagonal
(note that x0 = xm+1 = 1).

1 1 1 1 1 1 · · ·
· · · x1 e1,1 e2,2 · · · em,m xm

x2 e1,2 · · · em−1,m xm−1

. . . · · · · · · . .
.

xm e1,m x1

· · · 1 1 1 1 1 · · ·
The unimodular rule allows us to compute the rest of the frieze diagonal after diagonal. One
expects to express the entries as rational functions in variables xi. Surprisingly all the entries
simplify to Laurent polynomials.

Theorem 1.8 [26]. Entries in a frieze are Laurent polynomials, with positive integer
coefficients, in the entries xi, 1 � i � m, placed on a diagonal. Furthermore, one has the explicit
formula

ei,j = xi−1xj+1

(
1

xi−1xi
+

1
xixi+1

+ · · · + 1
xjxj+1

)
. (9)

Remark 1.9. The statement that entries are Laurent polynomials is not formulated in
[25], but is easy to deduce from the results of [25]. Indeed, from Proposition 1.5 one gets
ai = (xi−1 + xi+1)/xi, 1 � i � m (formula given in [25, §§ 6 and 7]), then using Theorem 1.6
one can express all the entries as Laurent polynomials, but this does not ensure the positivity
of the coefficients. This phenomenon of simplification of the rational expressions is known as
Laurent phenomenon and occurs in a more general framework [35, 36]. Using this general
framework, one can improve the statement of Theorem 1.8.

Theorem 1.10. Entries in a frieze are Laurent polynomials, with positive integer
coefficients, in the entries xi, 1 � i � m, placed in any zig-zag shape in the frieze.

Here ‘zig-zag shape’ means piecewise linear path from top to bottom where xi+1 is placed
immediately at the right or at the left under xi (without necessarily alternating right and left).

Example 1.11. Laurent polynomials obtained in a frieze of width 3:

1 1 1 1 · · ·
· · · x1

1 + x2 + x1x3

x1x2

1 + x2

x3
x3

x2
1 + x1x3

x2

(1 + x2)2 + x1x3

x1x2x3
x2 · · ·

· · · x3
1 + x2 + x1x3

x2x3

1 + x2

x1
x1

1 1 1 1 · · ·

1.6. From infinite friezes to the variety of tame friezes

In this section, we explain the structure of algebraic variety on the set of Coxeter’s friezes.
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The following idea is used in [64]. We consider the formal infinite frieze pattern F (Ai)i∈Z,
where (Ai)i∈Z is a sequence of indeterminates, placed on the first row:

1 1 1 1 1 1
· · · A1 A2 · · · An An+1 · · ·

· · · A1A2 − 1 A2A3 − 1 · · · AnAn+1 − 1 · · ·
· · · · · · · · · · · · · · ·

The entries in the frieze are computed row by row using the unimodular rule. The computations
are a priori made in the fractions field Q(Ai, i ∈ Z), but similarly to Theorem 1.6, one shows
the entries are actually in the polynomial ring Z[Ai, i ∈ Z]. In particular, the frieze F (Ai) is
well defined from its first row of indeterminates. One can show that the entries in the frieze
F (Ai) can be computed diagonal by diagonal using recurrence relations of type (7), or by direct
computation of determinants of type (8).

For a sequence of numbers (ai)i∈Z in any unital commutative ring, we define the infinite
frieze F (ai) from the formal frieze F (Ai) by evaluating all the entries at Ai = ai, i ∈ Z.

Definition 1.12. We say that the frieze F (ai) is closed of width m if the (m + 1)th row
is a row of 1s and the (m + 2)th row is a row of 0s.

Example 1.13. The following frieze is a closed frieze of width 2 if and only if x = −1.

· · · 1 1 1 1 1 1 1 1
−1 −1 −1 −1 − x 0 x −1 −1 · · ·

· · · 0 0 x −1 −1 −1 − x 0 0
1 1 1 1 1 1 1 1 · · ·

Indeed, in the fourth row of the frieze F (Ai) one has the entry e1,4 = A1A2A3A4 − A1A2 −
A1A4 − A3A4 + 1. If one evaluates F (Ai) with A1 = A2 = A3 = −1 and A4 = −1 − x, then
one obtains on the fourth row e1,4 = −1 − x. Hence x = −1 is a necessary condition for the
above frieze to be closed of width 2. Then one checks that it is also sufficient.

Remark 1.14. Friezes coming from an evaluation of F (Ai) are generic in a wide sense.
The evaluation allows us to have a well-defined frieze from its first row even if the rows contain
0 entries. Such friezes are all tame (see the discussion in introduction to § 1 or Definition 3.1).

Theorem 1.15 [25, 63]. The frieze F (ai) is closed of width m if and only if the sequence
(ai)i is (m + 3)-periodic and satisfies

0 =

∣∣∣∣∣∣∣∣∣
a1 1
1 a2 1

. . .
. . .

. . .

1 am+2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
a2 1
1 a3 1

. . .
. . .

. . .

1 am+3

∣∣∣∣∣∣∣∣∣ , 1 =

∣∣∣∣∣∣∣∣∣
a2 1
1 a3 1

. . .
. . .

. . .

1 am+2

∣∣∣∣∣∣∣∣∣ .

This result was obtained in [25, p. 307] when ai are positive real numbers. The case of
arbitrary coefficients is deduced from [63, § 3] (particular case k = 1). In what follows, we will
mainly consider friezes over real or complex numbers.

When the frieze is closed of width m, the infinite array F (ai) has (m + 3)-antiperiodic
diagonals (it is a consequence of the periodicity of the coefficients and the recurrence relations
along the diagonals), therefore only the first m rows are relevant. Closed friezes are equivalent
to (tame) Coxeter’s friezes as defined in the introduction of § 1.

In conclusion, the set of real or complex (tame) Coxeter’s friezes of width m = n − 3 is an
algebraic subvariety of Rn or Cn defined by the three polynomial equations of Theorem 1.15.
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1.7. Superperiodic difference equations of order 2

We consider a linear difference equation of order 2, of the form

Vi = aiVi−1 − Vi−2, (10)

where the ai, i ∈ Z are coefficients and Vi, i ∈ Z the unknowns. This equation is sometimes
mentioned in the literature as ‘discrete Hill equation’ or ‘discrete Sturm–Liouville equation’ or
‘discrete one-dimensional Shrödinger equation’.

Following [56, 63], such an equation is called n-superperiodic if all its solutions (Vi) satisfy

Vi+n = −Vi

for all i ∈ Z, cf. Definition 3.12.
One shows that the set of superperiodic equations is defined by the same polynomial

equations in the coefficients ai as the closed friezes. In other words, one has the following
identification.

Theorem 1.16 [64]. The space of tame Coxeter’s friezes of width m is isomorphic, as
algebraic variety, to the space of (m + 3)-superperiodic equations of type (10).

This result was also implicitly obtained in [29].
Note that superperiodic equations necessarily have periodic coefficients, since the coefficients

can be recovered from the solutions. In the correspondence between friezes and equations of
order 2, the entries in the first row of the frieze coincide with the coefficients of the equation,
and pairs of consecutive diagonals in the frieze with solutions of the equation from different
initial values. We will give more details in the next section.

1.8. Moduli space of points on the projective line

Cross ratios of points on the circle and frieze patterns were already linked in [25]. Here, we give
a different version of such a link. We explain how the results of § 1.1 (case n = 5) generalize to
any odd n = m + 3. We will show that frieze patterns provide natural coordinate systems on
the (real or complex) moduli space M0,n and also on the bigger space

M̂0,n := {pi ∈ P1, i ∈ Z, pi+n = pi, pi �= pi+1}/PGL2.

Theorem 1.17 [64]. If n is odd, then the space M̂0,n is isomorphic to the space of tame
Coxeter’s frieze patterns of width n − 3.

We assume that the spaces are considered over the field of real or complex numbers. In what
follows, we will work over C (the case over R is similar but requires more care regarding the
orientation). The above theorem is stated in [64], and was proved in a more general form in
[63]. We explain below in detail the explicit construction of the isomorphism. The construction
also uses an idea of [68], and general ideas of projective geometry [69].

Construction of the isomorphisms of Theorems 1.16 and 1.17. We fix an odd integer n. Given
an element p of M̂0,n, we explain here how we construct a closed frieze f(p) of width n − 3
and an n-superperiodic equation V (p).

First, we choose an n-periodic sequence (pi) of points in P1 representing p modulo PGL2.

Lemma 1.18. There exists a unique, up to a sign, lift of the sequence (pi) to a sequence
(Vi) of vectors in C2, such that Vi+n = −Vi and det(Vi+1, Vi) = 1, for all i.
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Proof. Consider an arbitrary lift of the points (p0, . . . , pn−1) to vectors (Ṽ0, . . . , Ṽn−1), and
extend the sequence by antiperiodicity. Since pi �= pi+1, we have: det(Ṽi+1, Ṽi) �= 0 for all i. We
wish to rescale: Vi = λiṼi, so that det(Vi+1, Vi) = 1 for all i. This leads to the following system
of n equations:

λi+1λi = 1/det(Ṽi+1, Ṽi), i = 0, . . . , n − 2,

λ0λn−1 = 1/det(Ṽn−1, Ṽ0).

This system admits a unique solution (up to a sign) if and only if n is odd. Hence the lemma.

The vectors of the sequence (Vi) defined in the above lemma satisfy relations of the form
Vi = aiVi−1 − Vi−2 with periodic coefficients ai+n = ai. Moreover, the coefficients (ai) are
determined by p, that is, independent of the choice of the representative (pi). We denote
by V (p) the corresponding equation (10). The equation V (p) is superperiodic since the two
components of the vectors of the sequence (Vi) provide two independent antiperiodic solutions.

In addition, modulo the action of GL2, we can normalize the lifted sequence of points so
that V0 = (0, 1) and Vn−1 = (1, 0).

The frieze f(p) is defined using the coefficients (ai) on the first row. Moreover, the normalized
sequence of lifted points (Vi) appears in the frieze (and also determines the frieze) as a pair of
consecutive diagonals. In the frieze f(p), one has

e1,i = V
(2)
i , e2,i = V

(1)
i ,

where (V (1)
i , V

(2)
i ) are the components of Vi. One obtains the following picture for f(p):

1 1 1 1 1 1
· · · V

(2)
1 V

(1)
2 a3 a4 a5 · · ·

V
(2)
2

. . . c4 c5 c6

. . . V
(1)
n−3 · · · · · · · · ·

V
(2)
n−3 V

(1)
n−2 · · · · · ·

· · · 1 1 1 1 1

The entries ei,j in the frieze can be computed directly using the sequence of vectors (Vi):

ei,j = det(Vj , Vi−2).

Let us mention that the second row of the frieze has an important geometric interpretation:
it gives cross ratios associated to p. More precisely, one has the following proposition.

Proposition 1.19. If p is an element of M̂0,n represented by an n-tuple (p0, . . . , pn−1) of
points in P1, then the entries in the second row of the frieze f(p) are

ei−1,i = [pi−3, pi−2, pi−1, pi] =
(pi − pi−3)(pi−1 − pi−2)
(pi − pi−1)(pi−2 − pi−3)

.

Proof. By Proposition 1.5, pairs of consecutive diagonals in the frieze represent the same
sequence of points modulo PGL2, up to cyclic permutations. For every j, one has

[pi−3, pi−2, pi−1, pi] =
[

ej,i−3

ej−1,i−3
,

ej,i−2

ej−1,i−2
,

ej,i−1

ej−1,i−1
,

ej,i

ej−1,i

]
.

Choosing j = i, one easily computes

[pi−3, pi−2, pi−1, pi] =
[−1

0
,
0
1
,

1
ei−1,i−1

,
ei,i

ei−1,i

]
=

1/ei−1,i−1

ei,i/ei−1,i − 1/ei−1,i−1
= ei−1,i.
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Remark 1.20. When n is odd, a point p ∈ M̂0,n is characterized by the sequence of the
n cross ratios

ci = [pi−3, pi−2, pi−1, pi].

One can recover the first row of the corresponding frieze f(p) directly from this data by solving
for ai in the system of equations

1 + ci = aiai+1, 1 � i � n,

where i is considered modulo n. When n is odd, the system of equations has two sequences of
solutions (ai) with opposite signs. Exactly one of these sequences defines a frieze.

2. Friezes and quivers

A first direction to generalize Coxeter’s notion of frieze pattern is to define frieze as functions
on a repetition quiver. Repetition quivers are classical objects in the theory of representations
of quivers.

Two main alternative conditions may be imposed to the functions on the repetition quivers
in order to define a frieze. One condition, that we call multiplicative rule, is a natural
generalization of Coxeter’s unimodular rule. The other condition is an additive analogue, that
we call additive rule, which naturally appears in the theory of representations of quivers.

Multiplicative friezes on repetition quivers were introduced in connection with the recent
theory of cluster algebras, [6, 22], and many results are obtained within this framework [3, 5,
10, 11, 21, 33, 54].

We define the main notions and give the main results that we need from quiver represen-
tations and from the theory of cluster algebras; details can be found in classical textbooks or
surveys on the subjects; see, for example, [7, 9, 41, 43, 52, 61, 73, 77].

2.1. Repetition quiver

Let Q be a quiver, that is, an oriented graph. The set of vertices Q0 and the set of arrows Q1

are assumed to be finite. We denote by n the cardinality of Q0 and often identify this set with
the elements {1, 2, . . . , n}.

The quiver is said to be acyclic if it has no oriented cycle.
We denote by Qop the quiver with opposite orientation, that is, all arrows of Q are reversed.
From an acyclic quiver Q, one constructs the repetition quiver ZQ (see [75]). The vertices

of ZQ are the couples (m, i), m ∈ Z, i ∈ Q0, and for every arrow i −→ j in Q1 one draws the
arrows

(m, i) −→ (m, j) and (m, j) −→ (m + 1, i),

for all m ∈ Z. All the arrows of ZQ are obtained this way.
Note that if Q and Q′ have same underlying unoriented graph, then they have same repetition

quivers but with different labels on the vertices. In particular, one has ZQ � ZQop.
We denote by τ the translation on the vertices of ZQ defined by

τ : (m, i) �−→ (m − 1, i).

Similarly, one can define the repetition quiver NQ, which is identified with the full subquiver
of ZQ with vertices (m, i), i ∈ Q0, m ∈ N.

A copy of Q in ZQ, with vertices (m, i), i ∈ Q0, for a fixed m, is called a slice of ZQ.

Example 2.1. The Dynkin quivers of type A,D,E, that is, those for which the underlying
unoriented graph is a Dynkin diagram of one of these types, play an important role in the
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theory of friezes. Below we fix the labels of the vertices of the Dynkin diagram that we will use
throughout the paper. We choose an orientation so that an edge i j is oriented from
the smaller index to the larger one. This notation agrees with the one of [41].

(1) Case Q = An:

(2) Case Q = Dn:

(3) Case Q = En, n = 6, 7, 8.

2.2. Friezes on repetition quivers

A generalized frieze of type Q is a function on the repetition quiver

f : ZQ −→ A,

assigning at each vertex of ZQ an element in a fixed commutative ring with unit A, so that
the assigned values satisfy some ‘mesh relations’ read out of the oriented graph ZQ.

The function f will be called an additive frieze if it satisfies for all v ∈ ZQ0,

f(τv) + f(v) =
∑

α∈ZQ1:

w
α→v

f(w).

The function f will be called a multiplicative frieze if it satisfies for all v ∈ ZQ0,

f(τv)f(v) = 1 +
∏

α∈ZQ1:

w
α→v

f(w).

Additive friezes are classical objects in AR theory, more often called ‘additive functions’; see,
for example, [41] and references therein. Multiplicative friezes naturally appear in [22] and are
precisely defined in [6].

Remark 2.2. It is possible to define friezes in a more general way using Cartan matrices
or valued quivers [6].
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Remark 2.3. Other rules for friezes naturally appear in the context of cluster algebras.
For instance, cluster-additive friezes and tropical friezes with recurrence rules

f(τv) + f(v) =
∑
w

α→v

max(f(w), 0), f(τv) + f(v) = max

⎛⎝ ∑
w

α→v

f(w), 0

⎞⎠ ,

respectively, are introduced and studied in [46, 76].

Example 2.4. For Q a Dynkin quiver of type Am, multiplicative friezes coincide with the
Coxeter friezes of width m, and additive friezes coincide with the patterns studied in [60, 81].
See also [41] where many additive friezes are represented. We give below examples of friezes
over integers, for the type D5 and for the Kronecker quiver • �� �� •.

(1) A multiplicative frieze of type D5 (computed in [10]):

2
����

�� 1
����

�� 4
�����

� 5
�����

� 6
����

�� 1

5
����

��

������ �� 1 �� 1
����

��

������ �� 2 �� 3
����

��

������ �� 2 �� 19
�����

������
�� 10 �� 29

�����
�

������
�� 3 �� 5

������ �� 2

8
����

��

������
2

����
��

������
1

����
��

������
7

����
��

������
11

�����
�

�����
8

������

3

������
3

������
1

������
2

������
4

������
3

������

(2) An additive frieze of type D5:

2
����

�� −1
����

� 1
����

� −2
����

1
����

� −2

1
����

��

������ �� −1 �� 1
����

��

����� �� 2 �� 0
����

��

������ �� −2 �� −1
����

����
�� 1 �� −1

����

�����
�� −2 �� −1

����
�� 1

1
����

��

������
1

����
��

������
0

����
��

������
0

����
��

�����
−1

����

����
−1

����

0

������
1

������
0

������
0

������
0

�����
−1

����

(3) A multiplicative frieze over the Kronecker quiver:

1
����

��

����
��

2
����

��

����
��

13
����

�
����

� 89
����

�
����

� 610

1

������
������

5

������
������

34

�����
�����

233

�����
�����

(4) An additive frieze over the Kronecker quiver:

1
����

��

����
��

3
����

��

����
��

5
����

��

����
��

7
����

��

����
��

9

2

������
������

4

������
������

6

������
������

8

������
������

Definition 2.5. Let us fix a set of indeterminates {x1, . . . , xn}. The generic additive and
multiplicative friezes, denoted by fad and fmu, respectively, are defined by assigning the value
xi to the vertex (0, i) for all 1 � i � n. One obtains

fad : ZQ −→ Z[x1, . . . , xn], fmu : ZQ −→ Q(x1, . . . , xn).

We will refer to the entries xi as the initial values of the friezes.

Note that these functions are well defined, see, for example, [3, Lemma 3.1]. One can note
also that fmu takes values in Qsf (x1, . . . , xn) the set of subtraction-free rational fractions, and
using the theory of cluster algebras this can be even reduced to Z�0[x±1

1 , . . . , x±1
n ] the set of

Laurent polynomials with positive integer coefficients.
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Remark 2.6. If x1, . . . , xn are not indeterminates but some given values in a ring A, then
one may find different multiplicative friezes with same initial values xi. Indeed, it may happen
that f(τv) = 0 for some v, and thus the multiplicative rule does not allow us to define uniquely
f(v). Below, we give an example of two different multiplicative friezes on the repetition quiver
of A3 with same initial values (0,−1, 0).

0
�����

� 0
�����

� 0
�����

� 0
�����

� 0
�����

� · · ·
· · · −1

�����
�

������
−1

�����
�

������
−1

�����
�

������
−1

�����
�

������
−1

�����
�

������
−1

0

������
0

������
0

������
0

������
0

������
0

������ · · ·

0
�����

� 2
�����

� 0
�����

� 4
�����

� 0
�����

� · · ·
· · · −1

�����
�

������
−1

�����
�

������
−1

�����
�

������
−1

�����
�

������
−1

�����
�

������
−1

0

������
1

������
0

������
3

������
0

������
5

� ����� · · ·

2.3. Symmetry of friezes

A frieze f : ZQ → A is periodic, if there exists an integer N � 1 such that fτ−N = f . The
following theorem is a consequence in terms of friezes of classical results from the theory of
quiver representations and the theory of cluster algebras. We suggest a proof below.

Theorem 2.7. The friezes fad and fmu over a quiver Q are periodic if and only if Q is a
Dynkin quiver of type An, Dn or E6,7,8; in these cases the periods are

Periods fad fmu

An n + 1 n + 3
Dn 2(n − 1) 2n
E6,7,8 12, 18, 30 14, 20, 32

Note that the period of fad coincides with the Coxeter number associated to the corresponding
Dynkin diagram, and the period of fmu is that number plus two.

Proof. If Q is of type A, D, E, then the periodicity of the friezes can be established case
by case.

For the frieze fad, the values on a given copy of Q are expressed linearly in terms of the
values of the previous copy. If d = (d1, . . . , dn) are on the mth slice of ZQ, then the values
d′ = (d′1, . . . , d

′
n) of the next slice are obtained by applying a linear transformation Ψ to the

column vector d. The transformations in type An, and Dn, oriented as in Example 2.1, are,
respectively,

ΨA =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 0 1
...

. . .
. . .

−1 0
. . . 1

−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , ΨD =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 0 1
...

. . .
. . . 1

−1 0
. . . 1

−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)

and similarly one can write down the matrices for each of the types E6,7,8. The periodicity of
the additive friezes then follows from the fact that each of the transformations Ψ has finite
order, which can be easily established, and determined, using Cayley–Hamilton’s theorem.

For the frieze fmu, the periodicity in type A is established by Coxeter, cf. Theorem 1.2. One
can find similar arguments in type D and the friezes in the type E6,7,8 can be computed by
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hand. One can also interpret the periodicity of fmu as the Zamolodchikov periodicity in the
cluster algebra of same type. This periodicity has been proved in [38].

The difficult part of the theorem is the necessary condition. We will give arguments using
quiver representations and cluster algebras in the next section (Remarks 2.21 and 2.30).

For the multiplicative friezes of type An (that is, Coxeter friezes of width n) one already
knows that the friezes are τn+3-invariant. Moreover, one knows that there is an extra symmetry:
the invariant translation factorizes as the square of an invariant glide reflection. There is an
analogous extra symmetry in each other Dynkin type (that implies the periodicity) that can
be expressed using the ‘Nakayama permutation’ ν. Following [41], we define ν : ZQ0 → ZQ0

in each Dynkin case by

(i) ν(m, i) = (m + i − 1, n + 1 − i) in type An, (ν is a glide reflection);
(ii) ν(m, i) = (m + n − 2, i) in type Dn, with n even;
(iii) ν(m, i) = (m + n − 2, i), for 1 � i � n − 2, and ν(m,n − 1) = (m + n − 2, n), ν(m,n) =

(m + n − 2, n − 1) in type Dn, with n odd;
(iv) ν(m, i) = (m + 5, 6 − i), for 1 � i � 5, and ν(m, 6) = (m + 5, 6) in type E6;
(v) ν(m, i) = τ−8(m, i) = (m + 8, i) in type E7;
(vi) ν(m, i) = τ−14(m, i) = (m + 14, i) in type E8.

Note that ν commutes with τ , and that ν2 = τ−N with N = n − 1, 2(n − 2), 10, 16, 28, in
the cases An, Dn and E6,7,8, respectively.

We also introduce the following other two transformations:

Σ := τ−1ν, F := τ−1Σ.

Remark 2.8. The transformations τ , ν, Σ and F are the combinatorial equivalent of the
AR, Nakayama, Serre and Frobenius functors, respectively, used for the quiver representations.

Theorem 2.9. Let Q be a Dynkin quiver of type An, Dn or E6,7,8.

(1) The frieze fad satisfies

fadΣ = −fad.

(2) The frieze fmu satisfies

fmuF = fmu.

This result will be explained in Remarks 2.22 and 2.30 using a certain symmetry in the AR
quiver associated with Qop.

Since all additive friezes can be obtained as an evaluation of the frieze fad, one immediately
obtains the following corollary.

Corollary 2.10. All additive friezes on a repetition quiver of type A, D, E are periodic.

There exist ‘singular’ multiplicative friezes, which are not evaluations of fmu, and may be
non-periodic, cf. Remark 2.6 where a non-periodic multiplicative frieze of type A3 appears.

2.4. Quiver representations

Friezes arise naturally in the theory of quiver representations. In this context, vertices of the
repetition quiver are identified with finite-dimensional modules of the path algebra defined over
the initial quiver. The structure becomes more rich. Additive or multiplicative friezes of integers
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can be obtained by taking the dimensions or the Euler characteristics of the Grassmannian of
the modules attached to the vertices. This will be developed in the next sections.

In this section, we collect briefly some basic facts and theorems of quiver representations.
We refer the reader to [7, 9, 41, 77], for details and complete expositions of the subject.

Let Q be a finite acyclic connected quiver. We work over the field of complex numbers. A
representation (or module) of Q is a collection of spaces and maps

(i) (Mi)i∈Q0 , where Mi is a C-vector space attached to the vertex i;
(ii) (fij : Mi → Mj)i→j∈Q1 , where fij is a C-linear map attached to an arrow i → j.

Let M = (Mi, fij) and M ′ = (M ′
i , f
′
ij) be two representations of Q. One defines naturally their

direct sum as M ⊕ M ′ = (Mi ⊕ M ′
i , (fij , f

′
ij)). A morphism from M to M ′ is a collection of

linear maps (gi, i ∈ Q0) such that all diagrams of the following form commute:

Mi

fij ��

gi

��

Mj

gj

��
M ′

i
f ′

ij

�� M ′
j

The module M ′ is a subrepresentation of M if there exists an injective morphism from M ′ to
M . A representation is called indecomposable if it is not isomorphic to the direct sum of two
non-trivial subrepresentations.

We denote by repQ the category of representations of Q, with objects and morphisms defined
as above. This category is equivalent to the category of modules mod CQ, where CQ is the
finite-dimensional algebra called the path algebra. This algebra is defined as the k-vector space
with basis set all the paths in Q and multiplication given by composition of paths.

In these categories, projective modules play an important role. We define the family of
standard projective modules Pi, indexed by vertices i ∈ Q0. The module Pi has attached to
each vertex j the C-vector space (Pi)j with basis the set of all paths in Q from i to j. For each
arrow j → �, the linear map fj� : (Pi)j → (Pi)� is defined on the basis elements by composing
the paths from i to j with the arrow j → �.

Similarly, one can define the family of standard injective modules Ii, indexed by vertices
i ∈ Q0. The module Ii has attached to each vertex j the C-vector space (Ii)j with basis the set
of all paths in Q from j to i. For each arrow j → �, the linear map fj� : (Ii)j → (Ii)� is defined
on the basis elements by sending the paths from j to i starting with the arrow j → � to the
paths obtained by deleting the arrow j → �, and sending the other paths from j to i to 0.

Let us recall classical theorems and definitions in the theory of quiver representations.

Theorem 2.11 (Gabriel). There exist only finitely many indecomposable representations
of Q, up to isomorphism, if and only if Q is a Dynkin quiver of type A,D,E. Moreover, if Q
is of type A,D,E, then the following map realizes a bijection:

{classes of indecomposables of repQ} −→ {positive roots of the root system of Q},
[M ] �−→

∑
i∈Q0

(dim Mi)αi,

where {αi} is the basis of simple roots in the root system associated to the Dynkin diagram.

Definition 2.12 (AR quiver). The AR quiver of repQ is the quiver ΓQ defined by:

(i) vertices: isomorphism classes of indecomposable objects [M ];
(ii) arrows: [M ] �→ [N ], if the space of irreducible morphisms from M to N is of dimension �.
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The irreducible morphisms are those that are not compositions, or combinations of compo-
sitions, of other non-trivial morphisms. In other words, the AR quiver gives the elementary
bricks (modules and morphisms) to construct repQ.

The following classical theorem relates the AR quiver ΓQ (or part of it) to the repetition
quiver over Qop (the quiver with opposite orientation).

Theorem 2.13. Let Q be a finite acyclic connected quiver.

(1) The projective modules all belong to the same connected component ΠQ of ΓQ.
(2) In the case when Q is a Dynkin quiver of type A,D,E, the quiver ΓQ is connected and

can be embedded in the repetition quiver:

ΠQ � ΓQ ↪→ NQop. (12)

The image of ΓQ under this injection corresponds to the full subquiver of NQop lying between
the vertices (0, i) and ν(0, i), i ∈ Qop

0 . For all i ∈ Q0, the projective module Pi in repQ identifies
with the vertices (0, i), and the injective module Ii with ν(0, i).

(3) In all other cases, ΓQ is not connected. The component ΠQ is isomorphic to the
repetition quiver:

ΠQ
∼→ NQop. (13)

For all i ∈ Q0, the projective module Pi in repQ identifies with the vertices (0, i), in NQop.

The structure of the graph NQop reflects properties between the modules of repQ. Let M
and N be indecomposable modules. An exact sequence 0 → N → E

g→ M → 0 is called almost
split, if it is not split and if every non-invertible map X → M , with X indecomposable, factors
through g.

Theorem 2.14 (AR). In repQ, for every indecomposable non-projective module M, there
exists a unique, up to isomorphisms, almost split sequence 0 → N → E → M → 0.

The AR translation τ is defined on the non-projective vertices of ΓQ by τM := N for M
and N related by the almost split sequence 0 → N → E → M → 0.

Theorem 2.15 (AR). Under the maps (12) and (13), the AR translation and the
translation τ of the repetition quiver coincide.

Every almost split sequence 0 → τM → E → M → 0 leads to the following subquiver of the
AR quiver ΓQ:

E1

����
��

��
��

E2

��������

τM

�������

����������

��
����

��
��

��
... M��

E�

����������

(14)

where the modules Ei are the indecomposable factors of E. There are no other arrows arriving
at vertex M or exiting from vertex τM .



912 SOPHIE MORIER-GENOUD

2.5. Additive friezes and dimension vectors

Let f : ZQ → Z be an additive frieze of type Q. As usual, n stands for the cardinality of Q0.
We denote by fm,j the value of f at the vertex (m, j) of ZQ, and we denote by fm the vector
of Zn of the values of f on the mth slice of ZQ, that is,

fm =

⎛⎜⎝fm,1

...
fm,n

⎞⎟⎠ .

The frieze rule implies that the components of fm are Z-linear expressions in fm−1. In other
words, there exists a matrix ΨQ, depending only on Q, satisfying for all m ∈ Z

fm = ΨQfm−1.

We want to give an expression for ΨQ (for examples in type A and D, cf. (11)). We will use
some known results related to the representations of Q and Qop.

The dimension vector of a module M = (Mi, i ∈ Q0; fα, α ∈ Q1) is a vector of Nn defined by

dim M = (dim Mi)i∈Q0 .

The alternate sum of dimensions of the spaces in the exact sequence 0 → τM → ⊕Ei →
M → 0 vanishes and leads to the relation

dim τM + dim M =
∑

i

dim Ei.

This relation allows one to compute recursively the indecomposable modules from the
projective ones; the process is known as ‘knitting algorithm’.

The mapping dim : ΠQ → Zn is interpreted as an additive frieze on ΠQ. Using the map (12)
or (13), this induces an additive frieze from ZQop to Zn. Since we consider friezes from ZQ to
Zn, we will use the representations of Qop. By Theorem 2.13, the standard projective modules
P op

i of repQop are attached to the vertices (0, i) of ZQ, and in type A, D, E, the injective
modules Iop

i are attached to the vertex ν(0, i) of ZQ.
Define the additive frieze of dimensions

d : ZQ −→ Zn

by assigning the initial values d(0, i) = dim P op
i , for all i ∈ Q0. Using the projection pri on the

ith component of the vectors in Zn, we define a family of additive friezes, indexed by i ∈ Q0,

di := pri ◦ d : ZQ −→ Z.

Example 2.16. Let us illustrate the above notions for the following quiver:

2

��

2

�����������

Q : 1

		��������� �� 3 Qop : 1 3





��

P1 : 1
12 P2 : 1

01 P3 : 0
01 P op

1 : 0
10 P op

2 : 1
10 P op

3 : 1
21

where we write the dimension vectors of the modules under the form d2
d1d3

.
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We obtain the following friezes of type Q:

d :

��

1
10

�� �����
���

�
2

32

�� �����
���

�
4

43

��
����





0
10

��

���������
1

21
��



																	 2
21

��

���������
3

32
��



																	 3
43

��

���������
4

54
��

d1 :

��

1

�� ������������ 3

�� ������������ 4

�� ����





1 ��

������������
2 ��



																				
2 ��

������������
3 ��



																				
4 ��

������������
5 ��

One can see that in the frieze d1 : ZQ → Z the first slice 1
12 coincides with the dimension vector

of P1, the next slices give the dimension vectors of the translated of P1 through τ−1.

The vector dimensions, and thus the friezes di, can be computed by the mean of the so-called
Coxeter transformation. Let us recall some known results; see, for example, [7, 77].

The Cartan matrix CQ = (cij)i,j∈Q0 associated with Q is given by

cij = number of paths in Q from j to i.

The matrix CQ is invertible; its inverse C−1
Q = (bij) is given by bii = 1 and for i �= j

bij = −(number of arrows in Q from j to i).

The Coxeter transformation ΦQ is defined as

ΦQ = − tCQC−1
Q ,

where the superscript t denotes the transpose operation on the matrix CQ.
Note that CQop = tCQ and ΦQop = Φ−1

Q . Also it is immediate from the definitions that

ΦQ dim Pi = −dim Ii,

for all standard projective and injective modules. In general, one has the following classical
theorem; see, for example, [7, § IV 2.9, p116, 77, Corollay 7.16, p. 190].

Theorem 2.17. Let M and N be indecomposable modules of repQ. If M is non-projective,
and N non-injective, then one has

ΦQ dim M = dim τM, Φ−1
Q dim N = dim τ−1N.

The above relations interpreted in terms of friezes lead to the following result.

Lemma 2.18. For the friezes di, one has ΨQ = Φ−1
Q , that is, di

m = Φ−1
Q di

m−1, for all m ∈ Z.

Proof. The j-th column of the matrix CQop gives the vector dim P op
j , and the ith row of

CQop gives dim Pi which is also the vector di
0 = (di

0,j) of the values of the frieze di on the copy
of 0 ×Q in ZQ. By Theorem 2.17, one has

Φ−1
Qop CQop = (dim τ−1P op

1 , . . . ,dim τ−1P op
n ) =: BQop .
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The ith row of BQop gives the vector di
1 = (di

1,j) of the values of the frieze di on the next copy
of 1 ×Q in ZQ. By transposing the matrices in the above equation, one obtains

(d1
1, . . . , d

n
1 ) = tBQop = tCQop

tΦ−1
Qop = CQ tΦQ = Φ−1

Q CQ = Φ−1
Q (d1

0, . . . , d
n
0 ).

Hence, the result.

Proposition 2.19. The family (di)i∈Q0 forms a Z-basis of the space of additive friezes from
ZQ to Z. The additive frieze fad : ZQ0 → Z[x1, . . . , xn] decomposes as a formal combination

fad =
∑
i∈Q0

aid
i,

where the coefficients are given by (ai)i = C−1
Q (xi)i.

Proof. Let f : ZQ0 → Z be an additive frieze with initial values given by the column vector
f0 = (f0,j)j . The vectors di

0 are the columns of the invertible matrix CQ; in particular they
form a Z-basis of ZQ0 . One writes f0 in this basis:

f0 =
∑

i

aid
i
0 = CQ(ai)i.

Using Lemma 2.18, one obtains the values of f on any slice as fm = Φ−m
Q

∑
i aid

i
0 =

∑
i aid

i
m.

One deduces f =
∑

i aid
i, with (ai)i = C−1

Q f0.

Example 2.20. Going back to Example 2.16, one computes the Cartan matrix, its inverse
and the Coxeter transformation

CQ =

⎛⎝1 0 0
1 1 0
2 1 1

⎞⎠ , C−1
Q =

⎛⎝ 1 0 0
−1 1 0
−1 −1 1

⎞⎠ , Φ−1
Q = −CQ tC−1

Q =

⎛⎝−1 1 1
−1 0 2
−2 1 2

⎞⎠ .

The formal frieze fad is

fad :

��

x2

��
���������� 2x3 − x1

�� �����������
x2 + 3x3−3x1

�� ����





x1 ��

������������
x3 ��






















 x2 + x3−x1
��

����������
x2 + 2x3−2x1

��


















3x3 − 2x1

��

����������
4x3 − 3x1

��

and decomposes as

fad = a1d
1 + a2d

2 + a3d
3 where

⎛⎝a1

α2

α3

⎞⎠ = C−1
Q

⎛⎝x1

x2

x3

⎞⎠ =

⎛⎝ x1

x2 − x1

x3 − x2 − x1

⎞⎠ .

For instance, one can check this formula for the vertex (1, 1):

fad(1, 1) = x1d
1(1, 1) + (x2 − x1)d2(1, 1) + (x3 − x2 − x1)d3(1, 1)

= 2x1 + 2(x2 − x1) + (x3 − x2 − x1)
= −x1 + x2 + x3.

The values of fad on consecutive copies of Q in ZQ are obtained by applying Φ−1
Q :

· · · Φ−1
Q−→

⎛⎝x1

x2

x3

⎞⎠ Φ−1
Q−→

⎛⎝ −x1 + x2 + x3

−x1 + 2x3

−2x1 + x2 + 2x3

⎞⎠ Φ−1
Q−→

⎛⎝ −2x1 + x3

−3x1 + x2 + 3x3

−3x1 + 4x3

⎞⎠ Φ−1
Q−→ · · · .
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Remark 2.21. In the case when Q is an acyclic quiver not of Dynkin type A,D,E, by
a theorem of Auslander [8] one knows that there exist indecomposable modules in repQop of
arbitrarily large dimensions. Hence, at least one of the functions di is not bounded, and the
frieze fad cannot be periodic. This is the final argument for the proof of Theorem 2.7 in the
additive case.

Remark 2.22 (Proof of Theorem 2.9, additive case). In the case when Q is a Dynkin quiver
of type A,D,E, the identifications of the vertices (0, j) and ν(0, j) of ZQ with the modules
P op

j and Iop
j induce the symmetry of fad given in Theorem 2.9. Indeed, the property

di(−1, j)j = ΦQ(di(0, j))j = −(diν(0, j))j

is a reformulation of the property ΦQdim Pi = −dim Ii. One therefore deduces the symmetry
diτ−1ν = −di, for all i. Applying twice this property, one deduces the periodicity. One can
explain that the periods are exactly the Coxeter number of the Dynkin graph Q by interpreting
the Coxeter transformation ΦQ as the action of a Coxeter element of the Weyl group in the
corresponding root system. The order of such elements is precisely the Coxeter number of the
graph.

2.6. Multiplicative friezes and cluster character

The theory of multiplicative friezes is closely related to the theory of cluster algebras. One can
immediately recognize the entries of the frieze fmu as cluster variables. We start by collecting
some basic definitions and notions from the theory of cluster algebras.

Cluster algebra is a recent theory developed by Fomin and Zelevinsky [35–37]. Let us mention
the following surveys, notes and books, on the subject [43, 52, 61, 73], where one can find
more details on what will be exposed below.

Cluster algebras are commutative associative algebras defined by generators and relations.
The generators and relations are not given from the beginning. They are obtained recursively
using a combinatorial procedure encoded in a quiver.

We fix here the algebraically closed field k = C. Our initial data are a quiver Q with no
loops and no 2-cycles, and a set of indeterminates {x1, . . . , xn}. As before n stands for the
cardinality of Q0, and the vertices are labelled with an integer in {1, . . . , n}. The cluster algebra
AQ(x1, . . . , xn) will be defined as a subalgebra of the field of fractions C(x1, . . . , xn). The
generators and relations of AQ are given using the recursive procedure called seed mutations
that we describe below.

A seed is a couple Σ = ((u1, . . . , un),R), where R is a quiver, without loop and 2-cycle, with
n vertices, and where u1, . . . , un are free generators of C(x1, . . . , xn) labelled by the vertices of
the graph R. The mutation at vertex k of the seed Σ is a new seed μk(Σ) defined by

(i) μk(u1, . . . , un) = (u1, . . . , uk−1, u
′
k, uk+1, . . . , un) where

u′kuk =
∏

arrows in R
i→k

ui +
∏

arrows in R
i←k

ui;

(ii) μk(R) is the graph obtained from R by applying the following transformations:

(a) for each possible path i → k → j in R, add an arrow i → j;
(b) reverse all the arrows leaving or arriving at k;
(c) remove a maximal collection of 2-cycles.

Mutations are involutions.
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Example 2.23. Example of mutation

2

��

2

����������

(x1, x2, x3), 1

����������
3�� �� μ1 �� (x2+x3

x1
, x2, x3), 1 �� 3

Definition 2.24. Starting from the initial seed Σ0 = ((x1, . . . , xn),Q), one produces n new
seeds μk(Σ0), k = 1, . . . , n. One applies all the possible mutations. The set of rational functions
appearing in any of the seeds produced in the mutation process is called a cluster. The rational
functions in a cluster are called cluster variables. The cluster algebra AQ(x1, . . . , xn) is defined
as the subalgebra of C(x1, . . . , xn) generated by all the cluster variables.

Note that if ((u1, . . . , un),R) is a seed obtained by sequences of mutations from
((x1, . . . , xn),Q), then the algebras AR(u1, . . . , un) and AQ(x1, . . . , xn) are isomorphic.

One of the first surprising results is the so-called Laurent phenomenon.

Theorem 2.25 [35]. In the cluster algebra AQ every cluster variable can be written as a
Laurent polynomial with integer coefficients in the variable of any given cluster.

Moreover, the coefficients of the above Laurent polynomials have been conjectured to be
positive integers. This is proved in the situation we are considering (and in other more general
situations); see [55, 59].

The following result characterizes the Dynkin quivers in the theory of cluster
algebras.

Theorem 2.26 [37]. The cluster algebra AQ has finitely many cluster variables if
and only if the initial graph Q is mutation equivalent to a Dynkin quiver of type
A,D,E.

Moreover, in type A,D,E, the cluster variables are uniquely determined by their monomial
denominator (we define uniquely the denominator by writing the variables as irreducible
rational fractions).

Theorem 2.27 [37]. If Q is a Dynkin quiver of type A,D,E, then one has a bijection
between the set of non-initial cluster variables of the algebra AQ(u1, . . . , un) and the positive
roots of the root system associated to Q. Under this bijection, there is a unique cluster variable
with denominator ud1

1 ud2
2 · · ·udn

n , for each positive root
∑

i∈Q0
diαi.

When combining the above theorem with Gabriel’s theorem, one obtains a bijection

{indecomposables of repQ}/ � −→ {non-initial cluster var. of AQ(u1, . . . , un)},
M �−→ xM

(15)

that gives xM as the unique cluster variable with denominator ud1
1 ud2

2 · · ·udn
n , where (di) =

dim M .
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Caldero and Chapoton gave an explicit formula for the variables xM . Their formula uses the
quiver Grassmannian Gre(M) defined for a quiver representation M by

Gre(M) = {N subrepresentation of M, dim N = e},
for all e ∈ NQ0 . The quiver Grassmannian is a projective subvariety of a product of ordinary
Grassmannians.

Theorem 2.28 [22]. Let Q be a Dynkin quiver of type A,D,E, and M be an
indecomposable module of repQ with dim M = (di). One has

xM =
1

ud1
1 ud2

2 . . . udn
n

∑
e∈NQ0

χ(Gre(M))
∏

i∈Q0

x
∑

j→i ej+
∑

i→j(dj−ej)

i , (16)

where χ is the Euler characteristic.

The function CC : M �→ CC(M) = xM defined by the formula (16) is known as the Caldero–
Chapoton formula and often called a ‘cluster character’.

Proposition 2.29 [22]. In repQ each exact sequence 0 → τM → ∑
Ei → M → 0, where

M and Ei are indecomposables leads to a relation

xτMxM = 1 +
∏

xEi
.

Recall that the exact sequences as above are represented by the picture (14) in the AR
quiver of repQ. In other words, the evaluation of the cluster character CC on the AR quiver
gives rise to a piece of multiplicative frieze. This property certainly motivated the definition of
generalized multiplicative friezes.

Remark 2.30 (Proof of Theorems 2.7 and 2.9, multiplicative case). Let Q be a Dynkin
quiver of type A,D,E. By Theorem 2.13, we identify the AR quiver ΓQop with the full subquiver
of ZQ containing all the vertices between (m, i) and ν(m, i), i ∈ Q0 so that P op

i = (m, i) and
Iop
i = ν(m, i).
Denote by u1, . . . , un the entries fmu(m − 1, 1), . . . , fmu(m − 1, n) in the multiplicative frieze

fmu. It is clear from the definition of the frieze rule that all the entries of fmu are cluster
variables of AQ(u1, . . . , un). One computes by induction the denominators of the entries
fmu(m, i) using the frieze rule (this can be done case by case for instance on the quivers
given in Example 2.1). The denominator of fmu(m − 1, i) is of the form ud1

1 ud2
2 · · ·udn

n with
dj equal to the number of paths from j to i in Q. In other words, (dj)j = dim P op

i . By (15),
one obtains fmu(m, i) = xP op

i
; by Proposition 2.29, one deduces fmu(M) = xM for all M of

ΓQop identified with a vertex of ZQ. In particular, one has fmu(ν(m, i)) = fmu(Iop
i ) = xIop

i
.

Similarly, one can compute the denominators of the entries fmu(m − 2, i) and checks that the
denominator of fmu(m − 2, i) is u

d′
1

1 u
d′
2

2 . . . u
d′

n
n with (d′j)j = dim Iop

i . Hence, fmu(m − 2, i) =
xIop

i
= fmu(ν(m, i)). This establishes the symmetry fmu = fmuντ−2 stated in Theorem 2.9. By

applying twice this property, one obtains the periodicity.
When Q is an acyclic quiver, not of type A,D,E, one may use similar arguments. It is more

convenient to use the cluster category CQ; see [20, 73]. To each rigid indecomposable module
M of CQ, one assigns injectively a cluster variable xM . Formula (16) and Proposition 2.29 can
be generalized to the acyclic case. The connected component of the AR quiver of CQ containing
the projective modules, called tranjective component, is isomorphic to ZQ. The frieze fmu can
be viewed as the evaluation of CC on the transjective component. Therefore, the frieze contains
infinitely many different entries and cannot be periodic. More details can be found in [3].
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Remark 2.31. In the frieze fmu, from the values ui on the slice m ×Q0, one computes
the values on the next copy (m + 1) ×Q0 by induction using the frieze rule. This induction
corresponds to performing a suitable (not unique) sequence of mutations, in which every
mutation μi for i ∈ Q0 appears exactly once. At each step, the mutation will be performed
at a vertex that is a source (that is, which has only outgoing arrows). In type A,D,E, with
initial oriented quiver given as in Example 2.1, a possible sequence is μ = μn · · ·μ2μ1. The
periodicity of the multiplicative frieze corresponds to the fact that μ has finite order h + 2,
where h is the Coxeter number associated to the Dynkin quiver. This property is known as
Zamolodochikov periodicity. It was proved in the Dynkin case in [38] and in a more general
case in [53]; see also [52].

3. SLk+1-friezes

Coxeter’s frieze patterns naturally generalize to SLk+1-tilings and SLk+1-friezes.
An SL2-tiling [6] is an infinite array (ei,j)i,j∈Z satisfying Coxeter’s unimodular rule: all 2 × 2

minors over adjacent rows and adjacent columns in the array are equal to 1 (in comparison
with frieze patterns, the boundary condition of rows of 1s and 0s is removed). Generalizing
this rule to (k + 1) × (k + 1) minors of adjacent rows and columns, we arrive at the notion of
SLk+1-tilings [14]. An SLk+1-tiling bounded (from top and bottom) by a row of 1s and k rows
of 0s, is called an SLk+1-frieze [14, 24, 63].

Friezes and SLk+1-tilings recurrence relations appearing in mathematical physics as relations
satisfied by a family of transfer matrices in solvable lattice models [13, 57]. These systems are
also related to the discrete Hirota equation or octahedral recurrence. They were recently studied
in connection with the combinatorics of cluster algebras; see, for example, [30, 31, 51].

A geometric interpretation of SLk+1-friezes leads to the classical moduli spaces of config-
urations of points in projective spaces. The latter spaces are, in turn, closely related to the
geometry of Grassmannians. Furthermore, SLk+1-friezes can also be interpreted as difference
equations with special monodromy conditions. The three realizations of the same space: that
of SLk+1-friezes, moduli spaces, spaces of difference equations is referred as ‘triality’ in [63].

3.1. SLk+1-tilings and projective duality

Let M = (mi,j)i,j∈Z be a bi-infinite matrix with coefficients in an arbitrary field of character-
istic 0. Define the adjacent minors of A of order r + 1 based on (i, j) as

M
(r+1)
i,j = det

⎛⎜⎜⎝
mi,j mi,j+1 . . . mi,j+r

mi+1,j mi+1,j+1 . . . mi+1,j+r

. . . . . . . . .
mi+r,j mi+r,j+1 . . . mi+r,j+r

⎞⎟⎟⎠ . (17)

Definition 3.1 [14]. (1) An SLk+1-tiling is an infinite matrix M = (mi,j)i,j∈Z for which
all adjacent minors of order k + 1 equal 1, that is, M

(k+1)
i,j = 1 for all i, j ∈ Z.

(2) An SLk+1-tiling is called tame if in addition all adjacent minors of order k + 2 vanish,
that is, M

(k+2)
i,j = 0 for all i, j ∈ Z.

The tameness condition is understood as a condition of genericity on the tiling. For instance,
every SLk+1-tiling with non-zero adjacent minors of order k is tame, due to the Desnanot–
Jacobi, or Sylvester, identity

M
(r+1)
i,j M

(r−1)
i+1,j+1 = M

(r)
i,j M

(r)
i+1,j+1 − M

(r)
i,j+1M

(r)
i+1,j .
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Example 3.2. Every Coxeter frieze uniquely extends to a tame SL2-tiling [14]. For
instance, the frieze (1) extends to

Definition 3.3 [14]. (1) The r-derived array of the SLk+1-tiling M = (mi,j)i,j∈Z is the
bi-infinite matrix defined by

∂rM := (M (r)
ij )i,j∈Z.

(2) The k-derived array is called the projective dual of M and denoted by M∗.

The link to classical projective duality will be explained in § 3.5.

Proposition 3.4 [14]. Let M be a tame SLk+1-tiling.

(i) The projective dual of M is also a tame SLk+1-tiling.
(ii) One has the following correspondence between the derived arrays of M and M∗:

(∂rM)i,j = (∂k+1−rM
∗)i+r−1,j+r−1.

In particular, (M∗)∗ and M coincide up to a shift of indices.

3.2. T -systems

A T -system of type Ak is the following recurrence on the variables {Tα,u,v}α,u,v:

Tα,u,v+1Tα,u,v−1 − Tα,u+1,vTα,u−1,v = Tα+1,u,vTα−1,u,v (18)

with α ∈ {0, 1, . . . , k, k + 1}, u, v ∈ Z, and boundary conditions

T0,u,v = Tk+1,u,v = 1, (19)
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for all u, v ∈ Z. It is nothing but the octahedral recurrence subject to boundary conditions.

A T -system splits into two independent subsystems

{Tα,u,v} = {Tα,u,v : α + u + v even} 
 {Tα,u,v : α + u + v odd},

each subsystem satisfying the recurrence (18). In what follows, we will consider α + u + v even.

Theorem 3.5 [13, 57]. If {Tα,u,v}α,u,v satisfy (18), then for all 0 � α � k, u, v ∈ Z:

Tα+1,u,v = det

⎛⎜⎜⎜⎝
T1,u,v−α T1,u+1,v+1−α · · · T1,u+α,v

T1,u−1,v+1−α T1,u,v+2−α · · · T1,u+α−1,v+1

...
...

T1,u−α,v T1,u+1−α,v+1 · · · T1,u,v+α

⎞⎟⎟⎟⎠ .

Applying the above result with α = k, one deduces that the first layer of a T -system
{T1,u,v}u,v forms an SLk+1 tiling, and the next layers are obtained as derived arrays of this
tiling. More precisely, as noticed in [14], one has the following result.

Corollary 3.6. Let {Tα,u,v}α,u,v be a solution of (18) and (19). Set M = (mi,j)i,j with
mi,j = T1,j−i,i+j . Then, M is an SLk+1-tiling and

∂αMi,j = Tα,u,v

for all α = 1, . . . , k and v = i + j + α, u = j − i. Conversely, every SLk+1-tiling gives rise to a
solution of (18).

3.3. Periodicity of SLk+1-friezes

An SLk+1-tiling F = (fi,j)i,j is called an SLk+1-frieze of width w if, in addition to the condition
M

(k+1)
i,j = 1, it satisfies the following ‘boundary conditions’:{

fi,i−1 = fi,i+w = 1 for all i,

fi,i−1−� = fi,i+w+� = 0 for 1 � � � k.

Remark 3.7. The notion of SLk+1-friezes of positive numbers first appeared in [24], with
the extra condition that all minors A

(r)
1,j equal 1 for 2 � r � k and 1 � j � w. Such arrays were

shown to be (k + w + 2)-periodic (this generalizes Coxeter’s Theorem 1.2). This periodicity
holds true for all tame SLk+1-friezes.
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Theorem 3.8 [63]. Every tame SLk+1-frieze (fi,j)i,j satisfies, for all i, j,

fi,j = (−1)kfi+k+w+2,j and fi,j = (−1)kfi,j+k+w+2.

In particular, for all i, j, one has

fi,j = fi+k+w+2,j+k+w+2.

The above periodicity of tame SLk+1-friezes has been announced in [14]; another proof is also
given in [51] in the context of T -systems. It turns out that this periodicity can be interpreted
as Zamolodchikov’s periodicity for systems of type Ak × Aw, established in this case in [83].

Remark 3.9. When the frieze is not tame one may observe different phenomena. For
instance, the array in Example 1.13 can be extended to a 6-periodic SL2-frieze of width 2.
The second array in Remark 2.6 leads to a non-periodic SL2-frieze of width 3. For interesting
properties of non-tame friezes, see [28].

We will display the SLk+1-friezes as follows, and often omit the k bordering rows of 0s (note
a slight change in the notation by a horizontal flip compared to the notation for Coxeter’s
friezes):

...
...

0 0 0 0 0 . . .
. . . 1 1 1 1 1

. . . f0,w−1 f1,w f2,w+1 . . . . . .

. .
.

. .
.

. .
.

. . . f0,1 f1,2 f2,3 f3,4 f4,5

f0,0 f1,1 f2,2 f3,3 f4,4 . . .
. . . 1 1 1 1 1

0 0 0 0 0 . . .
...

...

We denote by Fk+1,n the set of tame SLk+1-friezes of width w = n − k − 2.
The set Fk+1,n has a natural structure of algebraic variety (for the Coxeter’s case k = 1, see

§ 1.6, and for the general case, see § 3.4).

3.4. Friezes, superperiodic equations and Grassmannians

The results of §§ 1.3 and 1.7 generalize to SLk+1-friezes. Consider the following general linear
difference equation:

Vi = a1
i Vi−1 − a2

i Vi−2 + · · · + (−1)k−1ak
i Vi−k + (−1)kVi−k−1, (20)

with coefficients aj
i ∈ R, where i ∈ Z and 1 � j � k (note that the superscript j is an index,

not a power), and where the sequence (Vi) is the unknown, or solution. The entries in a tame
SLk+1-tiling turn out to be solutions to such equations [14, 31]. For the SLk+1-friezes, one has
precisely the following.

Theorem 3.10 [63]. Given a tame SLk+1-frieze F = (fi,j)i,j of width w and let n = k +
w + 2, for every fixed i0, the sequence (Vi)i defined by

Vi := fi0,i
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satisfies equation (20) with n-periodic coefficients

aj
i =

∣∣∣∣∣∣∣∣∣∣
fi−j+1,i−j+1 . . . fi−j+1,i

1
. . .

...
. . .

. . .
...

1 fi,i

∣∣∣∣∣∣∣∣∣∣
.

Remark 3.11. The above coefficients aj
i are adjacent minors of order j in the array F ,

denoted by F
(j)
i−j+1,i−j+1, cf. (17). One also has aj

i = F
(k−j+1)
i+2,i+1+w.

Definition 3.12 [56, 63]. An equation of the form (20) is called n-superperiodic if it
satisfies the two conditions:

(i) all coefficients are n-periodic, that is, aj
i+n = aj

i for all i, j and
(ii) all solutions are n-antiperiodic, that is, satisfy Vi+n = (−1)kVi, for all i.

We denote by Ek+1,n the set of linear difference equations of order k + 1 that are n-
superperiodic. The second condition in Definition 3.12 is actually a condition on the nk
coefficients of the equation. It gives rise to k(k + 2) independent polynomials relations; see,
for example, [63]. The set Ek+1,n is an algebraic subvariety of Rkn, or Ckn, of codimension
k(k + 2).

By combining Theorems 3.8 and 3.10, one deduces that friezes give rise to superperiodic
equations. The converse is also true, more precisely one has the following.

Theorem 3.13 [63]. The spaces Fk+1,n and Ek+1,n are isomorphic algebraic varieties, for
all integers k and n.

Let Grk+1,n be the Grassmannian, that is, the variety of k + 1 dimensional subspaces in
the vector space of dimension Cn, and Gro

k+1,n ↪→ Grk+1,n be the open subset that can be
represented by (k + 1) × n matrices whose adjacent minors of order k + 1 do not vanish. A
natural embedding of the space of friezes into the Grassmannian:

Fk+1,n ↪→ Gro
k+1,n ↪→ Grk+1,n,

is given by ‘cutting’ the following (k + 1) × n matrix⎛⎜⎝1 f1,1 . . . . . . f1,w 1
. . .

. . .
. . .

. . .

1 fk+1,k+1 . . . . . . fk+1,n−1 1

⎞⎟⎠ (21)

in the frieze.

3.5. Moduli space of polygons in the projective space

A non-degenerate n-gon is a map

v : Z −→ CP
k

such that vi+n = vi, for all i, and no k + 1 consecutive vertices belong to the same hyperplane.
We denote by Ck+1,n the space of equivalence classes of non-degenerate n-gons in CP

k, modulo
projective transformations (that is, modulo PGLk+1-action).

The Gelfand–McPherson correspondence [44] gives the following identification:

Ck+1,n � Gro
k+1,n/(C∗)n−1,
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that can be easily understood via choosing a representative for v in Ck+1,n, and lifting
(v1, . . . , vn) to Ck+1. Such a lifting is defined on the class of v up to non-zero multiples,
that is, up to the action of the torus (C∗)n−1.

Theorem 3.14 [63]. If k + 1 and n are coprime, then there is an isomorphism of algebraic
varieties:

Ek+1,n � Fk+1,n � Ck+1,n.

The above isomorphism is obtained by the composition of maps: Fk+1,n ↪→ Gro
k+1,n �

Ck+1,n. If k + 1 and n are not coprime, then this map is a projection with a non-trivial kernel.
More explicitly, starting from an n-gon v, there is a unique lift of v to V = (Vi)i with

Vi ∈ Ck+1 such that Vi+n = (−1)kVi and

det(Vi, Vi+1, . . . , Vi+k) = 1

for all i, provided k + 1 and n are coprime (cf. the case k = 1 explained in § 1.8). Moreover,
the sequence satisfies relations of the form (20), with coefficients that are independent of the
choice of v modulo PGLk+1. Thus the class of v defines a unique superperiodic equation, that
is, an element of Ek+1,n. Modulo the action of SLk+1 the sequence V can be normalized so
that (V0, V1, . . . , Vn−1) ∈ (Ck+1)n is of the matrix form (21). This matrix extends to a unique
element of Fk+1,n, independent of the choice of v modulo PGLk+1. Conversely, given a frieze
F = (fi,j) in Fk+1,n, every subarray (fi,j)r�i�r+k,0�j�n−1 of size (k + 1) × n defines the same
sequence (V0, . . . , Vn−1) modulo SLk+1 and by projection Ck+1 → CP

k defines a unique element
of Ck+1,n.

Definition 3.15. Let v = (vi) be a non-degenerate n-gon in CP
k. For each hyperplane

containing the k points (vi, . . . , vi+k−1), we denote by v∗i+k the corresponding element in
P((Ck+1)∗) = CP

k. The sequence v∗ = (v∗i ) is called the projective dual n-gon of v.

The duality commutes with the action of PGLk+1, so that the map ∗ : Ck+1,n → Ck+1,n

is well-defined. Moreover, this duality coincides with the projective duality on the friezes of
Definition 3.3, that is, the following diagram commutes:

F ∈ Fk+1,n

∗
��

� �� v ∈ Ck+1,n

∗
��

F ∗ ∈ Fk+1,n
� �� v∗ ∈ Ck+1,n

Remark 3.16. In terms of equations, the projective duality gives the following equation:

V ∗i = ak
i+k−1V

∗
i−1 − ak−1

i+k−2V
∗
i−2 + · · · + (−1)k−1a1

i V
∗
i−k + (−1)kV ∗i−k−1,

dual, or adjoint to equation (20). This implies that in terms of friezes the dual array F ∗ is
obtained from F by performing a horizontal reflection and a horizontal shift.

3.6. Gale duality on friezes and on difference operators

The classical Gale transform is a map

G : Ck+1,n −→ Cw+1,n,

where k + w + 2 = n; see [32, 42]. This map is nothing but the duality of the Grassmannians
Grk+1,n � Grw+1,n combined with the Gelfand–McPherson correspondence.
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We define the map G : Fk+1,n → Fw+1,n that we call ‘combinatorial Gale transform’. One
has the following commutative diagram:

Fk+1,n

G
��

� � �� Grk+1,n



	
��

�� �� Ck+1,n

G

��
Fw+1,n

� � �� Grw+1,n �� �� Cw+1,n

If k + 1 and n are coprime, then the map G tautologically coincides with G, otherwise, this is
a non-trivial generalization.

The explicit construction of the combinatorial Gale transform is as follows. Let F = (fi,j)i,j

be a tame SLk+1-frieze of width w, and let n = k + w + 2. Consider the coefficients aj
i defined

in Theorem 3.10, and form FG = (fGi,j)i,j the following array:

. . . 1 1 1 1 1 1
. . . a1

n a1
1 a1

2 . . . a1
n

a2
n a2

1 a2
2 . . . a2

n

. . . . .
.

. .
.

. .
.

. .
.

. . .
ak

n ak
1 ak

2 . . . ak
n . . .

1 1 1 1 1 1 . . .

where fGi,j = ak−j+i
i−1 .

Theorem 3.17 [63]. The array FG is a tame SLw+1-frieze of width k.

We call the frieze FG the Gale dual of F .
Equivalently, this duality can be expressed in terms of superperiodic equations. Let V be an

n-superperiodic equation of the form (20). Consider the equation V G of the form

V Gi = α1
i V
G
i−1 − α2

i V
G
i−2 + · · · + (−1)w−1αw

i V Gi−w + (−1)wV Gi−w−1, (22)

where the coefficients are n-periodic given by

αw−j
i =

∣∣∣∣∣∣∣∣∣∣

a1
i+1 1

a2
i+2 a1

i+2 1
...

. . .
. . . 1

aj+1
i+j+1 · · · a2

i+j+1 a1
i+j+1

∣∣∣∣∣∣∣∣∣∣
. (23)

The above equation (22) is n-superperiodic. This is the Gale dual, of equation (20). Note that
formula (23) is a generalization of the determinantal formula (8) for the Coxeter’s friezes.

A beautiful application of the combinatorial Gale transform and projective duality was given
by Krichever [56] in terms of the old classical problem of commuting difference operators.
Associate a difference operator to every equation (20):

L := a1
i T − a2

i T
2 + · · · + (−1)k−1ak

i Tk + (−1)kTk+1,

where T is the shift operator acting on the space of infinite sequences TVi = Vi−1. The
operator L is superperiodic if the eigenspace ker(L − Id) is contained in the eigenspace
ker(Tn − (−1)kId). The projective duality and combinatorial Gale transform then can be
viewed in terms of operators instead of equations. In particular, one obtains the superperiodic
operator L∗G , corresponding to the frieze F ∗G .

Theorem 3.18 [56]. If k + 1 and n are coprime, then the operators L and L∗G commute.
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Remark 3.19. As mentioned in Corollary 3.6, an SLk+1-tiling and its derived arrays form
a T -system. Such system can be pictured in the three-dimensional space, inside a k × w × n
box (with n = k + w + 2). We see α as the vertical coordinate and (i, j) as coordinates in
the horizontal plane. Given a frieze F , its derived arrays ∂2F, ∂3F, . . . lie on horizontal planes
α = 1, 2, 3, . . ., respectively. The top plane α = k contains the projective dual frieze F ∗. Up
to a shift of indices, the Gale dual frieze FG is located on the vertical plane i = j, and its
derived arrays, ∂2F

G , ∂3F
G , . . . lie on vertical planes j − i = 1, 2, . . ., respectively. The last

plane, i − j = w − 1, consists of the array (FG)∗ which is also equal to (F ∗)G up to a shift of
indices.

The faces of size k × w located on the walls i = const give a system of coordinates on Fk+1,n.
For every i = 1, . . . , n, the values on the face (∂αFi,j)α,j are cluster variables of the cluster
algebra of type Ak × Aw and each face forms a cluster. This cluster structure on Fk+1,n is
the one of the Grassmanniann Grk+1,n (see [79]), in which the frozen cluster variables are
evaluated to 1. This is a generalization of the results of [64] established in the case k = 2.

4. Friezes of integers and enumerative combinatorics

Important problems in the theory of friezes concern the friezes with positive integers.

(i) How to construct friezes containing only positive integers?
(ii) How many such friezes do exist?
(iii) What do the numbers appearing in the friezes count?

In the case of Coxeter’s friezes, all these questions have been answered thanks to a beautiful
correspondence between friezes and triangulations of polygons due to J. H. Conway. We explain
them in §§ 4.1 and 4.2. In the more general case of multiplicative friezes over a repetition quiver
or in the case of SLk-friezes some answers to the above questions are known. We expose them
in §§ 4.3–4.5.

Finally, one can ask a converse question. Can one produce new type of friezes using
combinatorial models? In § 4.6, we present a variant of frieze obtained from arbitrary dissections
of polygons.

4.1. Coxeter’s friezes of positive integers and triangulations of polygons

Coxeter formulates the problem of obtaining friezes with positive integers [25]. He obtains a
criterion to characterize such friezes (see Proposition 4.2) and connects them to the theory of
continued fractions.

From Coxeter’s results (see Theorems 1.6 and 1.10), one obtains the following immediate
corollaries.
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Proposition 4.1. (i) If the first row of a given frieze consists of integers then all the entries
of the frieze are integers.

(ii) If a frieze pattern contains a zig-zag of 1s, then all the entries of the frieze are positive
integers.

Let x1, . . . , xm be the entries on a diagonal of a frieze, with the convention x0 = xm+1 = 1.
Theorems 1.6 and 1.8 lead to the following criterion.

Proposition 4.2 [25]. If the entries x1, . . . , xm are all positive integers satisfying the
condition xi divides xi−1 + xi+1, for all 1 � i � m, then all entries in the frieze are positive
integers, and vice versa.

Proposition 4.1 gives an easy way to generate a frieze of positive integers: it suffices to set 1s
on a zig-zag shape in a frieze and to deduce the rest of the entries by applying the unimodular
rule. For instance, that is how one can get the frieze (1). However, there exist friezes of positive
integers that cannot be obtained this way. This is the case of the following frieze:

1 1 1 1 1 1 · · ·
· · · 1 3 1 3 1 3

2 2 2 2 2 2 · · ·
· · · 3 1 3 1 3 1

1 1 1 1 1 1 · · ·
Classification of frieze patterns with positive integers is related to triangulations of polygons.

The following theorem is credited to John Conway, cf. [26].

Theorem 4.3 [23]. Frieze patterns of width m = n − 3 with positive integers are in one-
to-one correspondence with the triangulations of a convex n-gon. If (a1, a2, . . . , an) is the cycle
on the first row of the frieze, then ai is the number of triangles adjacent to the ith vertex in
the corresponding triangulated n-gon.

The term quiddity of order n is introduced in [23] to refer to a sequence (a1, a2, . . . , an) of
positive integers defining the first row of a frieze of width n − 3, or equivalently, defining a
triangulation of an n-gon by its numbers ai of triangles incident to each vertex.

Example 4.4. The frieze (1) has quiddity (4, 2, 1, 3, 2, 2, 1) and corresponds to the following
triangulated heptagon:

Corollary 4.5. For a fixed width m, the number of friezes with positive integers is finite,
given by the (m + 1)th Catalan number

Cm+1 =
1

m + 1

(
2(m + 1)
m + 1

)
.
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Let us mention that relation between the Catalan numbers and matrices of the form (8) was
found independently in the 1980s; see [80] and references therein.

4.2. Combinatorial interpretations of the entries in a Conway–Coxeter frieze

Coxeter’s friezes with positive integers are often called Conway–Coxeter friezes.
All the entries in a Conway–Coxeter frieze can be combinatorially interpreted using the

corresponding triangulated n-gon. We denote cyclically by v1, . . . , vn the vertices of the
triangulated n-gon (with convention vi+n = vi−n = vi). Recall that the entries in the frieze
are denoted by ei,j as in (6), and, by Theorem 4.3, the entry ei,i counts the number of triangles
incident to vi.

We give three elementary ways to compute the value ei,j in the frieze from the corresponding
triangulated n-gon.

(1) Using the ‘length’ of the diagonals, defined as follows.
Assume that the sides of the polygon and the diagonals in the initial triangulation are all

of length 1. The length of all other diagonals can be computed recursively using the Ptolemy
rule:

B

���������

��
��

��
�

A

���

�������� D =⇒ |AD| · |BC| = |AB| · |CD| + |AC| · |BD|.
C

����

(In Euclidean geometry, the Ptolemy formula holds true for a quadrilateral inscribed in a
circle.)

In [23], it is shown that

ei,j = the length of the diagonal [vi−1 vj+1].

Note that the above formula gives ei,j = 1 if and only if [vi−1 vj+1] is a diagonal in the initial
triangulation.

(2) Using the ‘counting procedure’. This procedure is given in [23].

(a) Choose the vertex vi and assign the tag 0 at this vertex.
(b) All the vertices that are joined to vi in the triangulation are assigned the tag 1.
(c) Whenever a triangle has two vertices tagged by a and b, assign the tag a + b to the third

vertex.
(d) When all the vertices are tagged, one has

ei+1,j−1 = the tag at vertex vj . (24)

Example 4.6. We apply the above procedure in the situation of Example 4.4 in order to
obtain the values of the diagonal (e2,•) and (e3,•) of the frieze (1).

(3) Counting the ‘admissible paths’. This combinatorial interpretation is given in [19].
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An admissible path from vertex vi−1 to vertex vj+1 is an ordered sequence (τi, τi+1, . . . , τj),
of distinct triangles in the triangulation, such that the triangle τ� is incident to vertex v�. One
has:

ei,j = the number of admissible paths from the vertex vi−1 to vj+1. (25)

Note that the value ei,i−1 = 1 in the frieze is understood as the unique path ( ), of length 0,
between the vertices vi−1 and vi.

Example 4.7. In the situation of Example 4.4, let α, β, γ, δ, ε be the triangles in the
polygon.

Admissible paths (τ1, τ2) between vertices v7 = v0 and v3 are

(ε, β), (ε, α), (δ, β), (δ, α), (γ, β), (γ, α), (β, α),

which gives the value e1,2 = 7 in the frieze (1).
Note that the number of admissible paths between two vertices does not depend on the

orientation one chooses to go from a vertex to the another. Indeed, if (τ1, τ2) is a path from
vertex v7 to v3, then the set of triangles {α, β, γ, δ, ε} \ {τ1, τ2} defines an admissible path from
v3 to v7. Here the admissible paths (τ4, τ5, τ6) between v3 and v7 are

(α, γ, δ), (β, γ, δ), (α, γ, ε), (β, γ, ε), (α, δ, ε), (β, δ, ε), (γ, δ, ε).

This property gives ei,j = ej+2,i−2, which corresponds to the glide symmetry in the frieze.

Remark 4.8. Other combinatorial models to calculate and interpret the entries of the
frieze were suggested by several authors.

(a) In [72], the entries in a frieze are the numbers of perfect matchings on certain bipartite
graphs associated to the corresponding triangulation.

(b) In [27], the entries of the friezes are interpreted as root coordinates in some Weyl
groupoid.

(c) Considering Coxeter friezes as friezes on a repetition quiver ZQ, with Q of type An−3,
the Caldero–Chapoton formula gives the entry ei,j as the Euler characteristic of the total quiver
Grassmannian of the module Mi,j of repQ attached to the vertex (i, j) in the AR quiver:

ei,j = χ(GrMi,j) = χ
(⊔

eGreMi,j

)
=

∑
e

χ(GreMi,j).

This provides a geometric interpretation of Proposition 4.1. See [3, 22].
(d) Links between friezes and Farey series were already mentioned in [25]. In [65], Conway–

Coxeter friezes are classified using cycles in the Farey graph. If the triangulated n-gon
corresponding to the frieze is embedded in the Farey graph so that v1 = 0

1 and vn = 1
0 , then
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the sequence of vertices (vi) are rational points in the Farey graph, such that the sequence of
denominators gives the diagonal e1,• and the sequence of numerators give the diagonal e2,•.
For Example 4.4, one obtains

which gives the quotient of the diagonal e2,• = (0, 1, 2, 1, 1, 1, 1) by e1,• = (1, 4, 7, 3, 2, 1, 0)
of (1).

(e) The link between friezes, triangulations of polygons and the Farey graph is illustrated
by the applet of [78].

4.3. Multiplicative friezes of type Q with integer values

Recall that in § 2, Coxeter’s friezes were generalized to multiplicative friezes associated to an
acyclic quiver Q. Entries in the generic multiplicative frieze fmu over ZQ are cluster variables
in the cluster algebra of type Q. The general theory and the combinatorial models developed
for the cluster algebras may be helpful to understand friezes of positive integers.

The result of Proposition 4.1 can be generalized in the case of multiplicative friezes over ZQ.
A section S of ZQ is a full subquiver of ZQ such that ZS � ZQ. In other words, a section
contains all the vertices of Q but not necessarily in the same copy. The set of variables of fmu

lying on a section forms a cluster in the algebra AQ. By Laurent phenomenon, cf. Theorem 2.25,
one obtains the following corollary; see also [3].

Corollary 4.9. Let Q be any acyclic quiver and f be a multiplicative frieze over ZQ. If
f takes the constant value 1 over any given section of ZQ, then all the values taken by f are
positive integers.

The converse is not true. A frieze with positive integers does not necessarily have a section
of 1s. A way to construct a frieze of positive integers is to choose an arbitrary cluster in
the corresponding cluster algebra and specify all its variables to 1. Then all the other cluster
variables will evaluate to positive integers. Friezes obtained this way are called unitary friezes
in [62]. However, there exist non-unitary friezes as noticed in [10, Appendix] and in [62]. The
number of integral friezes is not the number of clusters in the corresponding cluster algebra,
except for the type An where it is given by a Catalan number, cf. Corollary 4.5.

Theorem 4.10 [40]. The number of friezes with positive integers in type Dn is

n∑
m=1

d(m)
(

2n − m − 1
n − m

)
,

where d(m) is the number of divisors of m.

The above result is obtained using the combinatorial model of triangulations of punctured
polygons associated with the cluster algebra of type D.
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The exact numbers of friezes with positive integers in type E have not been established.
Several independent computer programs have enumerated such friezes. The results are:

(i) 868 friezes found in type E6 (see[40, 64, 72]) and Cuntz (private communication);
(ii) 4400 friezes found in type E7 (under a hypothetical upper bound on the entries) [40];
(iii) 26 953 friezes found in type E8 (see Cuntz, private communication); under a hypothetical

upper bound on the entries 26 592 friezes have been found in [40].

Using the finite-type classification of cluster algebras, cf. Theorem 2.26, one obtains the
following.

Proposition 4.11 [62]. If Q is an acyclic quiver that is not Dynkin of type A, D, E, then
there exist infinitely many multiplicative friezes on ZQ taking positive integer values.

Remark 4.12. (a) In [10], the entries in the integral friezes of type D are obtained as
numbers of certain matchings in a triangulated punctured disc.

(b) In [39], the numbers of friezes of Dynkin type taking non-zero integer values are
obtained.

(c) One has the following interesting property of the entries in a multiplicative frieze f over
ZQ, proved in [6, 54]. For each i ∈ Q0, the sequence (f(m, i))m∈Z satisfies a linear recurrence
relation if and only if Q is a Dynkin or affine acyclic quiver.

(d) With a more general notion of multiplicative friezes using Cartan matrices [6], one also
obtains finitely many integral friezes in the other Dynkin types B,C and G (see [40]).

4.4. SLk+1-friezes with positive integer values

Recall that SLk+1-friezes of width w are related to the cluster algebra of type Ak × Aw; see
Remark 3.19. The problem of constructing SLk+1-friezes with positive integer values is related
to the problem of having positive integer values for the cluster variables in type Ak × Aw. The
two problems are not a priori equivalent as not all cluster variables appear in SLk+1-friezes.
However, as in the case of multiplicative friezes over a repetition quiver, one has an elementary
construction of SLk+1-friezes with positive integer values by evaluating to 1 all the cluster
variables in a chosen cluster. When the corresponding cluster algebra is of infinite type this
produces infinitely many friezes.

Theorem 4.13 [62]. For k,w > 1, there exist infinitely many SLk+1-friezes of width w
with positive integer values whenever kw � 9.

For small values of k and w, one has the following known results.

(i) For k = 1: there are finitely many SL2-friezes of width w (this case corresponds to
Coxeter’s friezes); the number of such friezes is given by a Catalan number; see Corollary 4.5.

(ii) For w = 1, there are finitely many SLk+1-friezes of width 1 for every k. This is obtained
by Gale duality (see § 3.6): an SLk+1-frieze of width 1 corresponds to an SL2-frieze of width k.

(iii) For k = 2: there exist exactly 51 SL3-friezes of width 2, conjectured in [72] and
proved in [64]; 868 SL3-friezes of width 3 have been found (see [40, 64, 72] and Cuntz
(private communication)); 26 953 SL3-friezes of width 4 have been found in Cuntz (private
communication).

(iv) For k = 3: by Gale duality one obtains 868 SL4-friezes of width 2.

Remark 4.14. The quivers A2 × A3 and A2 × A4, corresponding to SL3-friezes of width
3 and of width 4, respectively, are mutation equivalent to the quivers E6 and E8, respectively.
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However, the SL3-friezes do not contain all the cluster variables of the corresponding cluster
algebras, unlike the multiplicative friezes over the repetition quivers. Therefore, the number
of SL3-friezes with positive integer values could be greater than the number of multiplicative
friezes of the same cluster type. According to Cuntz (private communication), 868 is the exact
number of SL3-friezes of width 3, and by consequence is also the exact number of multiplicative
friezes of type E6. The number 26 953 is not established as the exact number of SL3-friezes of
width 4. However, all the known 26 953 SL3-friezes correspond to 26 953 multiplicative friezes
of type E8.

4.5. SL2-tilings and triangulations

Recall that SL2-tilings are generalizations of Coxeter’s friezes by removing the condition of
bordering rows of 1s. They are viewed as bi-infinite matrices (mi,j)i,j∈Z for which every adjacent
2 × 2 minors are equal to 1.

In [47], a classification result about SL2-tilings with positive integer entries is obtained using
triangulations of strips. The SL2-tilings are assumed to have enough ones in the sense that for
every couple of indices (i0, j0) there exist i � i0, j � j0 such that mi,j = 1, and i′ � i0, j′ � j0,
such that mi,j = 1.

The strip can be viewed as an open polygon with infinitely many vertices. It consists in two
disjoint sets of ordered vertices (vi)i∈Z 
 (wi)i∈Z lying on two parallel lines. A triangulation
of the strip is a maximal collection of non-crossing arcs joining either a vertex vi to a vertex
wj or joining two non-consecutive vertices of the same line. A triangulation is called a good
triangulation of the strip if for every couple of indices (i0, j0) there exist an arc joining vi to
wj with i � i0 and j � j0 and an arc joining vi′ to wj′ with i′ � i0 and j′ � j0.

Theorem 4.15 [47]. The set of SL2-tilings of positive integers with enough ones is in
bijection with the set of good triangulations of the strip.

Example 4.16. Consider the following piece of triangulation of the strip:

One can associate an SL2-tiling using the same recursive counting procedure as for Conway–
Coxeter’s friezes, cf. § 4.2 Item (2). The procedure starts at a vertex vi labelled by 0, and ends
when all the vertices are labelled. The label at the vertex wj gives the value mi,j of the tiling.
For the above piece of strip, one obtains the following piece of matrix (where the first row is
at the bottom and the row indices increase from bottom to top):

...
3 2 5 3 1 1
4 3 8 5 2 3

· · · 1 1 3 2 1 2 · · ·
2 3 10 7 4 9
1 2 7 5 3 7

...
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Remark 4.17. In [16], the combinatorial model is refined to triangulations of the disc with
accumulation points. It is announced that all SL2-tilings of positive integers are obtained from
triangulations of the disc with four accumulation points.

Note that SL2-tilings containing only positive numbers are never periodic. Indeed, every SL2

matrix
(

a b
c d

)
of positive numbers satisfies a/c > b/d, so that in an SL2-tiling the ratios of two

consecutive rows form a strictly decreasing sequence.
In [65], one classifies antiperiodic SL2-tilings containing a rectangular domain of positive

integers. When writing the array as an infinite matrix, such tilings have the form

...
...

...

· · · P −P P · · ·

· · · −P P −P · · ·
...

...
...

where P is an m × n-matrix with entries that are positive integers.

Theorem 4.18 [65]. The set of antiperiodic SL2-tilings containing a fundamental rectan-
gular domain of positive integers of size m × n is in a one-to-one correspondence with the set
of triples (q, q′,M), where

q = (q0, . . . , qn−1), q′ = (q′0, . . . , q
′
m−1)

are quiddities of order n and m, respectively, and where M =
(

a b
c d

) ∈ SL2(Z>0), such that

q0 <
b

a
, q′0 <

c

a
.

The explicit construction of the SL2-tiling is given using a pair of triangulated polygons of
quiddities q and q′ suitably embedded in the Farey graph according to the matrix M ; see [65]
for details.

Example 4.19. For the initial data

q = (1, 2, 2, 1, 3), q′ = (2, 1, 2, 1), M =
(

2 5
7 18

)
.

one associates the following two polygons
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The triangulated polygons v and w have quiddities q and q′, respectively, and they are
normalized so that (v0, v1) =

(
2
7 , 5

18

)
and (w0, w1) =

(
0
1 , 1

0

)
. One constructs the corresponding

SL2-tiling (mi,j) by antiperiodicity using the formula

mi+1,j+1 = aidj − bjci where
ai

ci
= wi,

bj

dj
= vj , 0 � i � m − 1, 0 � j � n − 1.

One obtains here the following tiling:

...
...

...
...

...
...

...
...

...
...

· · · 2 5 8 11 3 −2 −5 −8 −11 −3 · · ·
· · · 7 18 29 40 11 −7 −18 −29 −40 −11 · · ·
· · · 5 13 21 29 8 −5 −13 −21 −29 −8 · · ·
· · · 3 8 13 18 5 −3 −8 −13 −18 −5 · · ·
· · · −2 −5 −8 −11 −3 2 5 8 11 3 · · ·
· · · −7 −18 −29 −40 −11 7 18 29 40 11 · · ·
· · · −5 −13 −21 −29 −8 5 13 21 29 8 · · ·
· · · −3 −8 −13 −18 −5 3 8 13 18 5 · · ·

...
...

...
...

...
...

...
...

...
...

4.6. Friezes and dissections of polygons

A natural way to define ‘generalized Conway–Coxeter friezes’ is to use ‘generalized triangula-
tions’. This direction has been investigated in [10, 15, 17] using triangulations of punctured
discs, and d-angulations, or more generally, dissections of polygons.

Let us construct a symmetric matrix M of size n × n, from a frieze pattern of width m =
n − 3. The matrix M is obtained by reflecting a fundamental triangular domain of the frieze
along a row of zeros. For instance, for the frieze (1) one would obtain the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 4 7 3 2 1
1 0 1 2 1 1 1
4 1 0 1 1 2 3
7 2 1 0 1 3 5
3 1 1 1 0 1 2
2 1 2 3 1 0 1
1 1 3 5 2 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(this matrix can also be found in the corresponding SL2-tiling by ignoring the signs, cf.
Example 3.2).

Theorem 4.20 [19]. The determinant of the matrix M is independent of the choice of the
triangular fundamental domain in the frieze. Moreover, one has

det(M) = −(−2)n−2.

Remark 4.21. A generalization of Theorem 4.20 for a matrix M whose entries are general
cluster variables of type A can be found in [11].

When considering the associated triangulated n-gon, the choice of a fundamental domain
corresponds to a choice of cyclic labelling of the vertices of the polygon. The entries mi,j of the
matrix M can be computed directly from the triangulation using the formulas (24) or (25).

The idea of [15, 17] is to construct similar matrices M from other types of ‘triangulations’
giving rise to pieces of more general frieze patterns.
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Figure 2 (colour online). A 4-angulation (left) and a (3, 3, 4, 4, 4)-dissection (right) of a
decagon.

A dissection of an n-gon is an arbitrary collection of non-crossing diagonals, or equivalently a
collection of smaller inner polygons π1, . . . π�, with arbitrary numbers of edges (that are either
sides or diagonals of the polygon), say d1, . . . , d�, respectively. We refer to the dissection as a
(d1, . . . , d�)-dissection. In the particular case when all the inner polygons have same number
of edges di = d, we call the dissection a d-angulation. Note that a d-angulation of an n-gon is
possible if n = d + (� − 1)(d − 2).

In what follows, [17] is the reference for the case of d-angulation and [15] the reference for
the general case of dissection.

The notion of admissible path introduced in § 4.2, Item (3), is generalized as follows.

Definition 4.22 [15, 17]. Given a dissection of a polygon (vi) (with convention on the
vertices vi+n = vi−n = vi), an admissible d-path between vertices vi−1 and vj+1 is an ordered
sequence (pi, pi+1, . . . , pj), of inner polygons such that the polygon p� is incident to vertex �,
and for any d, a d-gon in the dissection does not appear more than d − 2 times in the sequence.

The construction of the matrix M is generalized as follows.

Definition 4.23 [15, 17]. Given a dissection D of an n-gon (vi), define the matrix MD =
(mi,j)1�i,j�n by mi,i = 0 and

mi,j = the number of admissible d-paths from the vertex vi−1 to vj−1,

for all indices 1 � i �= j � n.

The matrix MD = (mi,j)1�i,j�n can be viewed as a piece of ‘generalized Conway–Coxeter
frieze pattern’. It is shown in [17] that in the case of a d-angulation the adjacent 2 × 2 minors
of MD are either −1, 0 or 1.

Theorem 4.20 is generalized as follows.

Theorem 4.24 [15, 17]. Let D be a (d1, . . . , d�)-dissection of an n-gon. The matrix MD
is symmetric. The determinant does not depend on the choice of the labelling of the vertices
of the polygon and

det(MD) = (−1)n−1
�∏

i=1

(di − 1).
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Example 4.25. For the dissections of Figure 2, one obtains the following matrices,
respectively,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 1 2 2 1 1 1
1 0 1 1 1 2 2 1 2 2
2 1 0 1 1 3 3 2 4 4
2 1 1 0 1 3 3 2 4 4
1 1 1 1 0 1 1 1 2 2
2 2 3 3 1 0 1 1 3 3
2 2 3 3 1 1 0 1 3 3
1 1 2 2 1 1 1 0 1 1
1 2 4 4 2 3 3 1 0 1
1 2 4 4 2 3 3 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 1 2 2 1 1 1
1 0 1 1 1 3 3 2 3 3
2 1 0 1 1 4 4 3 4 4
2 1 1 0 1 4 4 3 5 5
1 1 1 1 0 1 1 1 2 2
2 3 4 4 1 0 1 1 3 3
2 3 4 4 1 1 0 1 3 3
1 2 3 3 1 1 1 0 1 1
1 3 5 5 2 3 3 1 0 1
1 3 5 5 2 3 3 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Remark 4.26. The generalized frieze patterns coming from dissections of polygons can
be obtained by a categorical approach using an analogue of the Caldero–Chapoton formula
[48, 49].

5. Friezes in the literature and open questions

The notion of friezes on a repetition quiver and the one of SLk-tilings are ‘direct’ generalizations
and include Coxeter’s frieze patterns. Many other generalizations or variants of Coxeter’s frieze
patterns have been studied recently.

The variations around Coxeter’s definition can be made at different levels; one may
change the rule or the arithmetic used for the recurrence rule on the diamond, b

a d
c

and/or change the ‘shape of the diamond’ or one may define an array from a combinatorial
model. . ..

We list below some references where different types of friezes appear:

(i) friezes from matrix multiplication (see [18, 81]);
(ii) additive friezes: a + d = b + c or a + d = b + c + 1 (see [26, 58, 60, 81]);
(iii) tropical friezes: a + d = max(b + c, 0) (see [4, 45, 46, 71, 72]); or a + d = max(b, 0) +

max(c, 0) (see [76]);
(iv) quantum friezes: ad − q

1
2 bc = 1 (see [21]);

(v) NIM friezes: a � d = b � c + 1 (see [58, 81]);
(vi) cross-ratio friezes: (b − a)(c − d)/(a − c)(d − b) = −1 (see [84]);
(vii) continuous friezes F (x, y): F (∂2/∂x∂y)F − (∂/∂x)F (∂/∂y)F = 1 (see [70]);
(viii) 2-friezes:

b
a e d

c
⇒ ad − bc = e (see [62, 64, 72]);

(ix) super-friezes or Osp(1|2)-tilings (see [66]);
(x) SLk-friezes or SLk-tilings (see [6, 14, 24, 28, 63–65, 74]);
(xi) three-dimensional friezes: T -systems (see [30, 31, 51]);
(xii) multiplicative friezes on repetition quivers or from Cartan matrices (see [3, 5, 6, 10,

22, 33, 39, 40, 74]);
(xiii) friezes and combinatorial models (see [10, 12, 15, 17, 19, 27, 39, 40, 47, 71, 82]);
(xiv) · · ·
Open questions

The study of friezes and of variants of friezes may be undertaken in many different directions.
We suggest below some open questions and open direction of investigation.

The first five questions are related to friezes with positive integer values; see §§ 4.3 and 4.4.
The last three questions concern relations between friezes and other fields of mathematics.
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Q 1. How many multiplicative friezes with positive integer values are there in type E7,E8?

Q 2. How many SL3-friezes of width 4 with positive integer values are there?

Q 3. How many non-unitary friezes are there for a given type? See [62].

Q 4. Do there exist SLk-friezes with positive integer values for which the cluster variables
in the associated cluster algebra that do not appear in the frieze are non-integer rational
numbers?

Q 5. Find combinatorial models, as generalized triangulations, to enumerate SLk-friezes
with positive integer entries.

Q 6. Are the friezes using NIM addition always periodic? See [58, 81].

Q 7. Find an analogue of the triality Theorem 3.14 in the supersymmetric case. See [66].

Q 8. Superperiodic equations are related to Sturm–Liouville’s discrete oscillation theory
[1; 69, § 4.5]. Interpret the main results of this theory in terms of friezes, in particular, Sturm’s
separation and comparison theorems.

Acknowledgements. I would like to thank J. Conway, V. Ovsienko, S. Tabachnikov, P. Le
Meur, Y. Palu, C. Riedtmann for enlightening discussions, comments and references.
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