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To the memory of John Conway

The notion of q-deformed real numbers was recently introduced in [13, 14]. The first steps of this theory
were largely influenced by John Conway. In the fall of 2013, we had a chance to spend a week in his
company, on the occasion of a conference that we organized in Luminy, where Conway gave two wonderful
talks. Long conversations with John, who, between desperate attempts to teach us his famous doomsday
algorithm, told us much about his work with Coxeter, is what we cannot forget. Our understanding of
Conway and Coxeter’s theorem have transformed into a certain combinatorial viewpoint on continued
fractions [12], that eventually led us to q-deformations.

One goal of this article is to explain the origins of q-numbers and overview their main properties. We
will also introduce q-deformed Conway-Coxeter friezes. We would have loved to talk of this with John.

1. q-deformed Conway-Coxeter friezes

Friezes, or frieze patterns, is perhaps one of the most ingenious and the least known invention of
Coxeter [4], who confessed [3] that friezes “caused [him] many restless nights”. The question of Coxeter
about classification of friezes of positive integers was answered by Conway [2], and these friezes are often
called Conway-Coxeter friezes. We will introduce q-deformations of Conway-Coxeter friezes.

1.1. q-analogues: why, what, where? In mathematics and theoretical physics, “q-deformation” often
means “quantization”, and vice-versa. Historically, q is the exponential of the Planck constant, q = e~.
But, in quantization theory, both, q and ~, are parameters.

A number of q-deformations of algebraic, geometric, and analytic structures have been introduced and
thoroughly studied in mathematics. Among the q-deformed structures, we encounter quantum groups,
quantized Poisson structures, q-deformed special functions, just to mention the best known theories.
Quantized sequences of integer numbers arise and play an important role in all of them.

Quantized quantities are functions in q, usually polynomials, or power series. A “good” q-analogue of
a “classical” quantity must satisfy (at least) two requirements:

(1) when q → 1, we obtain the initial quantity;
(2) coefficients of polynomials in the quantized object have a combinatorial meaning.

Whenever a combinatorial object counts something, its q-analogue also counts the same things, but
with more precision. This is why the role of combinatorics in mathematical physics keeps increasing.

1.2. Euler and Gauss. Quantum integers have appeared in mathematics long before quantum physics
made its first steps. For a positive integer n, the polynomial

(1) [n]q := 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q

is commonly called the q-analogue of n. It satisfies two recurrences:

(2) [n + 1]q = q [n]q + 1, [n + 1]q = [n]q + qn,

both of them can be used as definition starting from the natural assumption [0]q = 0. They were
introduced by Euler, who studied the infinite product

∏
n≥1(1−qn), now called the Euler function. Euler

connected this function to permutations, thus founding simultaneously combinatorics and modular forms
theory.
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The q-factorial is defined by [n]q! := [1]q[2]q · · · [n]q, and the Gaussian q-binomial coefficients by(
n

m

)
q

:=
[n]q!

[m]q! [n−m]q!
.

They are polynomials. The role of q-binomials in combinatorics is immense. They count points in
Grassmannians over finite fields, Young diagrams, binary words, etc. Every coefficient of

(
n
m

)
q

has a

combinatorial meaning.
The first interesting example of q-binomial is

(
4
2

)
q

= 1 + q + 2q2 + q3 + q4 which is different from [6]q.

Moreover, [3]q! = 1 + 2q + 2q2 + q3 gives yet another version of “quantum 6”. These and many other
examples explain our viewpoint: we cannot quantize 6, or any other integer individually. What we
quantize are not integers, but sequences of integers.

1.3. Friezes and Conway’s classification. A frieze is an array of n staggered infinite rows of positive
integers, with the first and the last rows consisting of 1’s, that satisfies the local unimodular rule

· · · 1 1 1 1 1 · · · 1 · · ·
· · · ci ci+1 ci+2 · · · cj−1 cj · · ·

cij
· · · · · · · · ·

· · · 1 1 1 1 1 · · · 1 · · ·

local rule

b

a d

c

ad− bc = 1

A frieze is determined by the second row (ci)i∈Z. Every entry of the frieze is parametrized by two integers,
i and j. The local rule allows then to calculate cij . For instance, cii = ci, ci,i+1 = cici+1 − 1, etc.

Example 1.1. The following 7-periodic frieze with 6 rows is the main example of [2] (and the favorite
example of Coxeter who used it in all of his articles on the subject).

· · · 1 1 1 1 1 1 1 1 1

1 4 2 1 3 2 2 1 · · ·
· · · 1 3 7 1 2 5 3 1

1 2 5 3 1 3 7 1 · · ·
· · · 1 3 2 2 1 4 2 1

1 1 1 1 1 1 1 1 1 · · ·

1
3 2

2 4

2 1

Coxeter proved [4] that every frieze is (n + 1)-periodic. The Conway and Coxeter theorem provides
a classification of friezes, it states that friezes are in one-to-one correspondence with triangulations of a
convex (n + 1)-gon.

Theorem 1 ([2]). A sequence of positive integers (c0, . . . , cn), is a cycle of the second row of an n-row
frieze if and only if ci is the number of triangles at the i-th vertex of a triangulated (n + 1)-gon.

As acknowledged by Coxeter [3], this statement is actually due to John Conway.
Coxeter showed a connection of friezes to continued fractions, see Proposition 2.6 below. This connec-

tion is somewhat equivalent to existence of a natural embedding of friezes and triangulated (n + 1)-gons
into the Farey graph; see Figure 1.

Interest to Conway-Coxeter’s friezes has much increased recently because of the connection to various
areas of number theory, algebra, geometry and combinatorics. For a survey; see [11].

1.4. Quantum friezes. The following notion is new, although it was implicitly in [13].



QUANTUM NUMBERS AND q-FRIEZES 3

Definition 1.2. A q-deformed frieze is an array of n infinite rows of polynomials in one variable, with
the first row of 1’s, and the second row of Euler’s q-integers (1)

· · · 1 1 1 1 1 · · · 1 · · ·
· · · [ci]q [ci+1]q [ci+2]q · · · [cj−1]q [cj ]q · · ·

Cij(q)

· · · · · · · · ·
that satisfies the following “q-unimodular rule”

(3) Ci,j−1(q)Ci+1,j(q)− Ci+1,j−1(q)Cij(q) = q

j−1∑
k=i

(ck − 1)

.

Starting from the line ([ci]q) and using (3), one can calculate every next row of the q-frieze inductively.

Example 1.3. The q-deformation of the frieze of Example 1.1 is

· · · 1 1 1 1 1 1 1 1 1

1 [4] [2] 1 [3] [2] [2] 1 · · ·
· · · 1 q[3] {7} 1 q[2] {5} [3] 1

1 q2[2] q{5} [3] q2 q[3] {7} 1 · · ·
· · · q3 q2[3] q[2] q2[2] q3 q[4] [2] q3

q3 q4 q2 q3 q3 q4 q q3 q4 · · ·

where {7} = 1 + 2q + 2q2 + q3 + q4 and {5} = 1 + 2q + q3 + q4, and [c] is as in (1). For instance, {7} is

calculated twice, the first time as {7} = [4][2]− q3, and then as {7} = {5}[3]−q3
[2] .

Definition 1.2 does not look natural at first sight. In particular, (3) is no more local. However, it
leads to a frieze with nice properties. We will see in Section 2.3, that Cij(q) is a polynomial with positive
integer coefficients, in particular, the last row of a q-frieze consists in powers of q. Quantum friezes
deserve a thorough study and we currently work on this notion.

2. Introducing quantum rationals & irrationals

Similarly to integers, a rational number r
s cannot be q-deformed on its own, without including it into

a sequence. Attempts to q-deform the numerator and denominator separately lead to notions that lack

nice properties. A very naive formula
[
r
s

]
q

=
[r]q
[s]q

and a more standard one [x]q = 1−qx
1−q (note that they

coincide modulo rescaling of the parameter q) are among them.
We give here several equivalent definitions of q-rationals, and explain the connection to q-friezes.

For more definitions, a combinatorial interpretation, connection to Jones polynomial and cluster algebra;
see [13]. The q-deformation, [x]q, of an irrational x ∈ R is a Laurent series in q. It is due to an unexpected
phenomenon of stabilization of Taylor series of sequences of q-deformed rationals converging to x.

2.1. Deformed continued fractions. Every rational number r
s > 0 , where r, s ∈ Z>0 are coprime, has

a standard finite continued fraction expansion r
s = [a1, a2, . . .]. Choosing even number of coefficients (and

removing the ambiguity [a1, . . . , an, 1] = [a1, . . . , an+1]), we have the unique expansion r
s = [a1, . . . , a2m].

There is also a unique similar expansion with minus signs, called the Hirzebruch-Jung continued fraction:

r

s
= a1 +

1

a2 +
1

. . . +
1

a2m

= c1 −
1

c2 −
1

. . . −
1

ck

,
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where ai ≥ 1 and cj ≥ 2 (except for a1 ≥ 0, c1 ≥ 1). The notation used by Hirzebruch is r
s = Jc1, . . . , ckK;

the coefficients ai and cj are connected by the Hirzebruch formula; see, e.g., [12].

Definition 2.1. The q-deformed regular continued fraction is defined by

(4) [a1, . . . , a2m]q := [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . .

[a2m−1]q +
qa2m−1

[a2m]q−1

where [a]q is the Euler q-integer. The q-deformed Hirzebruch-Jung continued fraction is

(5) Jc1, . . . , ckKq := [c1]q −
qc1−1

[c2]q −
qc2−1

. . .

. . .

[ck−1]q −
qck−1−1

[ck]q

For r
s = [a1, . . . , a2m] = Jc1, . . . , ckK, the rational functions (4) and (5) coincide. This rational function is

called the q-rational, and denoted by
[
r
s

]
q

= R(q)
S(q) .

Both polynomials, R and S, depend on r and s.

Example 2.2. For instance, we obtain
[
5
2

]
q

= 1+2q+q2+q3

1+q and
[
5
3

]
q

= 1+q+2q2+q3

1+q+q2 . Observe that “quan-

tum 5” in the numerator depends on the denominator.

2.2. The weighted Farey graph and Stern-Brocot tree. Let us give a recursive definition. The

bbb bbb b b b b b b b b b b

1

1 q

1 q 1 q
2

q
3

11 q1 q q
2

1
1

0

1

1

1

1

0

1 q 1 1 1 1 1 1 1q
2

q q
3

q q
2

q q
4

b b b b b
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Figure 1. The weighted Farey graph between 0
1 and 1

0 ; the colored area corresponds to
the frieze of Example 1.1.

set of rational numbers Q, completed by ∞ := 1
0 , are vertices of a graph called the Farey graph. Two

rationals, r
s and r′

s′ are connected by an edge if and only if rs′ − r′s = ±1. Edges of the Farey graph are
often represented as geodesics of the hyperbolic plane which is triangulated.
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Definition 2.3. The weighted Farey graph, see Figure 1, is just the classical Farey graph, in which the
vertices are labeled by rational functions in q, and the edges are weighted by powers of q. The weights
and the labels are defined recursively via the following local rule:

1 q
k

q
k−1

R

S

R+qkR′

S+qkS′

R
′

S′

from the initial triangle ( 0
1 ,

1
1 ,

1
0 ) that remains undeformed.

Theorem 2 ([13]). The vertices of the weighted Farey graph are, indeed, labeled by q-rationals.

Remark 2.4. The Farey graph contains Z as a subgraph (that form a sequence of triangles, (n
1 ,

n+1
1 , 1

0 )).
Our q-deformation restricted to Z leads to Euler’s formula (1).

Alternatively, one can use the Stern-Brocot tree instead of the Farey graph.

1
0

0
1

•
1 11

1
1
0 •

q 1
•

q 1

0
1[

2
1

]
q

[
1
2

]
q

•
q2 1

•
q 1

•
q2 1

•
q 1

•
q3 1

[
3
1

]
q
•

q 1

•
q2 1

[
3
2

]
q
•

q 1

•
q3 1

[
2
3

]
q
•

q 1

•
q2 1

[
1
3

]
q
•

q 1[
4
1

]
q

[
5
2

]
q

[
5
3

]
q

[
4
3

]
q

[
3
4

]
q

[
3
5

]
q

[
2
5

]
q

[
1
4

]
q

. . . . . . . . .

(local rule)

qk−1
R
S

R′
S′

•
qk 1

qkR+R′
qkS+S′

The weight of every edge of the weighted Stern-Brocot tree is determined by the local rule along the tree:
the weight of the right branch is multiplied by q, the weight of the left branch is 1. This allows us to
calculate q-rationals inductively. For instance,

[
2
1

]
q

= q+1
1 = [2]q,

[
1
2

]
q

= q
q+1 . The left branch of the

tree consists in the classical q-integers (1).

2.3. q-deformed SL(2,Z). The modular group SL(2,Z) is a useful tool to work with continued fractions.
In our case, we need to q-deform SL(2,Z), so we consider the following three matrices:

(6) Rq :=

(
q 1

0 1

)
, Lq :=

(
q 0

q 1

)
, Sq :=

(
0 −q−1

1 0

)
.

For q = 1, we obtain the standard matrices any two of which can be chosen as generators of SL(2,Z).

Proposition 2.5 ([13]). Given a rational, r
s = [a1, . . . , a2m] = Jc1, . . . , ckK, the polynomials R(q)

and S(q) of
[
r
s

]
q

= R(q)
S(q) can be calculated as the entries of first column of the following matrix products

Ra1
q La2

q · · ·Ra2m−1
q La2m

q =

(
qR R′

qS S ′

)
, Rc1

q SqR
c2
q Sq · · ·Rck

q Sq =

(
R −qck−1R′′

S −qck−1S ′′

)
,

where R′,S ′ and R′′,S ′′ are lower degree polynomials corresponding to the previous convergents of the
continued fractions.

This way of understanding q-rationals clarify Definition 1.2. Indeed, (3) is the determinant of the
second matrix. Note that the matrices (6) are proportional to the matrices arising in the quantum
Teichmüller theory; see [5]. This interesting connection is yet to be investigated.



6 SOPHIE MORIER-GENOUD AND VALENTIN OVSIENKO

2.4. Connection to q-friezes. It turns out that q-rationals appear everywhere in q-deformed Conway-
Coxeter friezes, as quotients of the neighboring entries, so that we can consider q-friezes as yet another
way to describe q-deformations of rationals.

Let us first recall the connection between the Conway-Coxeter friezes and continued fractions.

Proposition 2.6 ([4]). If (cij) are the entries of a frieze, then
cij

ci+1,j
= Jci, . . . , cjK.

This statement has a straightforward q-analogue.

Proposition 2.7. If (cij) are the entries of a frieze and (Cij(q)) the entries of the q-deformed frieze,

then
Cij(q)

Ci+1,j(q)
=
[

cij
ci+1,j

]
q

= Jci, . . . , cjKq.

The q-frieze of Example 1.3 contains many examples of q-rationals: {5}[2] =
[
5
2

]
q
, {7}[3] =

[
7
3

]
q
, etc.

2.5. q-deformed irrational numbers. Let x ≥ 0 be an irrational number, and (xn)n≥1 a sequence of
rationals converging to x. Our definition is the following.

Take the sequence of rational functions [x1]q , [x2]q , . . . Consider their Taylor expansions at q = 0, for

which we will use the notation: [xn]q =
∑

k≥0 κn,k q
k.

Theorem 3 ([14]). (i) For every k ≥ 0, the coefficients of the Taylor series of [xn]q stabilize as n grows.

(ii) The limit coefficients κk = limn→∞ κn,k do not depend on the sequence (xn)n≥1, but only on x.

This stabilization phenomenon allows us to define the q-deformation of x ≥ 0 as a power series in q:

[x]q = κ0 + κ1q + κ2q
2 + κ3q

3 + · · ·

In the case of x < 0, the definition of q-deformation is based on the recurrence [x− 1]q := q−1 [x]q − q−1,

cf. Section 4.1. It turns out that the resulting series in q is a Laurent series (with integer coefficients):

[x]q = −q−N + κ1−N q1−N + κ2−N q2−N + · · ·

where N ∈ Z>0 such that −N ≤ x < 1−N .

3. Examples: q-Fibonacci and q-Pell numbers, q-golden ratio and
[√

2
]
q

Let us consider two remarkable sequences of rationals,

Fn+1

Fn
= [1, 1, . . . , 1]︸ ︷︷ ︸

n

and
Pn+1

Pn
= [2, 2, . . . , 2]︸ ︷︷ ︸

n

,

where Fn is the nth Fibonacci number, and Pn is the nth Pell number. Quantizing them, we obtain
sequences of polynomials with a very particular “swivel” property: the polynomials corresponding to Fn

(resp. Pn) in the numerator and denominator are mirrors of each other. The stabilized Taylor series of[
Fn+1

Fn

]
q

and
[
Pn+1

Pn

]
q

give rise of q-analogues of 1+
√
5

2 and 1 +
√

2, respectively.

3.1. q-Fibonacci numbers. Let Fn(q) be a sequences of polynomials defined by the recurrence

Fn+2 = [3]q Fn − q2Fn−2,

where [3]q = 1 + q + q2 is Euler’s quantum 3, and the initial conditions (F0(q) = 0,F2(q) = 1) and
(F1(q) = 1,F3(q) = 1 + q). The sequence of polynomials Fn(q) is a q-deformation of the Fibonacci

sequence, i.e., Fn(1) = Fn. Consider also the mirror polynomials F̃n(q) := qn−1Fn( 1
q ). The triangles of
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their coefficients
1
1 1
1 1 1
1 2 1 1
1 2 2 2 1
1 3 3 3 2 1
1 3 4 5 4 3 1
· · ·

1
1 1

1 1 1
1 1 2 1

1 2 2 2 1
1 2 3 3 3 1

1 3 4 5 4 3 1
· · ·

are the well-studied sequences A079487 and A123245 of OEIS [15].

Proposition 3.1. One has
[
Fn+1

Fn

]
q

= F̃n+1(q)
Fn(q)

.

Example 3.2. The case
[
5
3

]
q

have already been considered in Example 2.2. We then have[
8
5

]
q

=
1 + 2q + 2q2 + 2q3 + q4

1 + 2q + q2 + q3
,

[
13
8

]
q

=
1 + 2q + 3q2 + 3q3 + 3q4 + q5

1 + 2q + 2q2 + 2q3 + q4
,

[
21
13

]
q

=
1 + 3q + 4q2 + 5q3 + 4q4 + 3q5 + q6

1 + 3q + 3q2 + 3q3 + 2q4 + q5
,

. . . . . . . . .

The coefficients of these rational functions grow at every fixed power of q, and there is no stabilization
of rational functions.

3.2. q-Pell numbers. The sequence of polynomials Pn(q) satisfying the recursion

Pn+2 =

(
4

2

)
q

Pn − q4Pn−2,

where
(
4
2

)
q

is the Gaussian q-binomial; and with the initial conditions (P0(q) = 0,P2(q) = 1 + q) and

(P1(q) = 1,P3(q) = 1+q+2q2+q3), are q-analogues of the classical Pell numbers. The mirror polynomials

are defined by P̃n := q2n−2Pn( 1
q ). The coefficients of Pn(q)

1
1 1
1 2 1 1
1 2 3 3 2 1
1 3 5 6 6 5 2 1
1 3 7 11 13 13 11 7 3 1
· · ·

form a triangular sequence that was recently added to the OEIS (sequence A323670).

Proposition 3.3. One has
[
Pn+1

Pn

]
q

= P̃n+1(q)
Pn(q)

.

3.3. q-deformed golden ratio. To illustrate the stabilization phenomenon, we take the Taylor series
of the Fibonacci quotients; see Example 3.2. For instance,[

8
5

]
q

= 1 + q2 − q3 + 2q4 − 4q5 + 7q6 − 12q7 + 21q8 − 37q9 + 65q10 − 114q11 + 200q12 · · ·[
21
13

]
q

= 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 36q8 − 75q9 + 156q10 − 325q11 + 677q12 · · ·[
55
34

]
q

= 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 184q10 − 414q11 + 932q12 · · ·[
144
89

]
q

= 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 185q10 − 423q11 + 978q12 · · ·
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More and more coefficients repeat in every next series, the series eventually stabilize to

[ϕ]q = 1 + q2 − q3 + 2q4 − 4q5 + 8q6 − 17q7 + 37q8 − 82q9 + 185q10 − 423q11 + 978q12 − 2283q13

+5373q14 − 12735q15 + 30372q16 − 72832q17 + 175502q18 − 424748q19 + 1032004q20 · · ·

This power series is our quantized golden ratio
[
1+
√
5

2

]
q

:= [ϕ]q.

The series [ϕ]q satisfies the equation q [ϕ]
2
q −

(
q2 + q − 1

)
[ϕ]q − 1 = 0, which is a q-analogue of

x2 − x + 1 = 0. Therefore, the generating function of the series [ϕ]q is

(7) [ϕ]q =
q2 + q − 1 +

√
(q2 + 3q + 1)(q2 − q + 1)

2q
.

Let us mention that the coefficients of the series [ϕ]q remarkably coincide with Sequence A004148 of [15]

(with alternating signs), called the Generalized Catalan numbers.

3.4. q-deformed
√

2. Quotients of the Pell polynomials stabilize to the series
[
1 +
√

2
]
q
, from which we

deduce [√
2
]
q

= 1 + q3 − 2q5 + q6 + 4q7 − 5q8 − 7q9 + 18q10 + 7q11 − 55q12 + 18q13

+146q14 − 155q15 − 322q16 + 692q17 + 476q18 − 2446q19 + 307q20 · · ·

This series is a solution of q2
[√

2
]2
q
−
(
q3 − 1

) [√
2
]
q

= q2+1, which is our version of q-analogue of x2 = 2.

The generating function is then equal to

(8)
[√

2
]
q

=
q3 − 1 +

√
(q4 + q3 + 4q2 + q + 1)(q2 − q + 1)

2q2
.

Note that the coefficients of
[√

2
]
q

grow much slower than those of [ϕ]q, and does not match with any

known sequence.

3.5. Quadratic q-irrationals. Several observations can be done analyzing (7) and (8). The polynomial
under the radical of these q-numbers is a palindrome. This remarkable property remain true for arbitrary

quadratic irrationals, i.e., numbers of the form x = a+
√
b

c , where a, b > 0, c are integers.

Theorem 4 ([7]). For every quadratic irrational,
[
a+
√
b

c

]
q

=
A(q)+

√
B(q)

C(q) , where A, B and C are poly-

nomials in q. Furthermore, B is a monic polynomial whose coefficients form a palindrome.

A quadratic irrational can also be characterized as a fixed point of an element of PSL(2,Z). A q-
analogue of this property will be provided by Theorem 5 in the next section.

3.6. Radius of convergence. The modulus of the smallest (i.e., closest to 0) root of the polynomials
under the radical in (7) and (8) is equal to

R−ϕ =
3−
√

5

2
and R−√

2
=

1 +
√

2−
√

2
√

2− 1

2
,

respectively. This are the radius of convergence of the Taylor series (7) and (8). The modulus of the
largest roots are R+

ϕ = 1/R−ϕ and R+√
2

= 1/R−√
2
, viz

R+
ϕ =

3 +
√

5

2
and R+√

2
=

1 +
√

2 +
√

2
√

2− 1

2
.

Aesthetic aspect of these formulas pushed us to analyze several more examples. One of them is

another remarkable number, 9+
√
221

14 , sometimes called the “bronze ratio”. This is the third, after ϕ
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and
√

2, badly approximated number in the Markov theory. The modulus of the minimal and maximal

roots of the polynomial under the radical in
[
9+
√
221

14

]
q

are

R− =
1 +
√

13−
√

2
(√

13− 1
)

4
and R+ =

1 +
√

13 +
√

2
(√

13− 1
)

4
.

Note that 221 = 13 · 17. We do not know if the striking resemblance with the case of
√

2 is a coincidence.
A work on the analytic properties of q-numbers is in progress [8].

4. Some properties of q-rationals

The notion of q-rationals arose from an attempt to understand the connection between several different
theories, such as continued fractions, Jones polynomial of (rational) knots, quantum Teichmüller theory,
and cluster algebra. These connections were discovered by many authors; see [5, 9]. Our definition is
a specialization of such notions as F -polynomials, quantum geodesic length, snake graphs. We present
some concrete properties of q-rationals that we consider as most important, many of them reflect this
deep connection. For more details; see [13, 14].

4.1. PSL(2,Z)-action. Our first important property is the following.

Theorem 5 ([7]). The procedure of q-deformation commutes with the PSL(2,Z)-action.

Indeed, the first recurrence (2) remains true for q-rationals. For every x ∈ Q, we have

(9) [x + 1]q = q [x]q + 1.

Recurrence (9) readily follows from (4). The recurrence (9) is very useful for us, since it allows us to
define q-deformations of x < 0. Furthermore, we have

(10)

[
− 1

x

]
q

= − 1

q [x]q
, [−x]q = −q−1 [x]q−1 .

Together, (9) and (10), define an action of PSL(2,Z) on q-rationals generated by the matrices Rq and qSq

in (6). This was (implicitly) checked in [13]; see Lemma 4.6, and will be further developed in [7].

Remark 4.1. Recurrence (9) appear, e.g., for q-integers, and plays a crucial role in quantum algebra.
For instance this recurrence is necessary for the quantum binomial formula. Identities (10) look more
intriguing and need to be better understood.

4.2. Total positivity. The polynomials in the numerator and denominator of a positive q-rational have
positive integer coefficients, with 1 at lowest and higher orders. Moreover, the set of all q-rationals has a

much stronger property of total positivity. Consider two q-rationals,
[
r
s

]
q

= R(q)
S(q) and

[
r′

s′

]
q

= R′(q)
S′(q) .

Theorem 6 ([13]). If r
s > r′

s′ > 0, then the polynomial

(11) X r
s ,

r′
s′

(q) := R(q)S ′(q)− S(q)R′(q)

has positive integer coefficients.

The main ingredient of the proof of this theorem is the fact that (11) is a monomial, i.e., proportional

to a power of q, if and only if r
s and r′

s′ are connected in the Farey graph.
Theorem 6 means that the “quantization preserves the order”, in the sense that it is a homeomorphism

of Q into an ordered subset of partially ordered set of rational functions. The notion of total positivity
has a long history in mathematics and manifests in every area of it.
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4.3. Relation to the Jones polynomial. One of the ingenious inventions of Conway [1] was to encode
a certain large class of knots, called “rational”, or “two-bridge” knots, by continued fractions. Every
notion of the knot theory, such as knot invariants, can then be directly associated to continued fractions.

The Jones polynomial is a powerful invariant in the knot theory. It turns out that one can express
the Jones polynomial J r

s
(q) of the two-bridge knot associated to a rational r

s , as a combination of the

polynomials R and S of the q-rational
[
r
s

]
q
.

Theorem 7 ([13]). The Jones polynomial of a two-bridge knot is J r
s
(q) = qR(q) + (1− q)S(q).

The proof is based on connection to cluster algebra; see [9].

4.4. Unimodality conjecture. Long computer experimentation and evidence in the simplest cases
convinced us in yet another property of q-rationals.

Conjecture 1 ([13]). For every
[
r
s

]
q

= R(q)
S(q) , the coefficients of the polynomials R(q) and S(q) form

unimodal sequences.

This means that the coefficients of the polynomials increase from 1 to the maximal value (that can
be taken by one or more consecutive coefficients) and then decrease to 1. Unimodal sequences appear
in mathematics, and this property is interesting because it often hides some combinatorial or geometric
structure.

A proof of several particular cases of the conjecture, and connection to old problems of combinatorics,
was obtained in [10]. However, the general problem is open.
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