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Abstract. We consider tangent cones of Schubert varieties in the complete flag variety. We
investigate the problem when the tangent cones of two different Schubert varieties coincide.
In particular, we show that all Schubert varieties corresponding to the Coxeter elements of
the Weyl group have the same tangent cone.

1. Introduction

Let F be the algebraic variety of all complete flags in Cn. Recall that a complete flag
F ∈ F is an increasing sequence of subspaces

{0} = V0 ⊂ V1 ⊂ V2 ⊂ ⋯ ⊂ Vn = Cn, dimVk = k.

Choosing the standard basis {ε1, . . . , εn} of Cn, one defines the standard flag, F0 ∈ F , for
which Vk = Ck ∶= ⟨ε1, . . . εk⟩, for all 1 ≤ k ≤ n. The group GL(n,C) of linear transformations
of Cn transitively acts on F . The Borel subgroup B ⊂ GL(n,C) of upper-triangular matrices
is the stabilizer of the standard flag F0, so F = GL(n,C)/B.

Let us recall some well-known facts. The group B acts naturally on F (by left multiplica-
tion). The variety F is a disjoint union of B-orbits called Schubert cells. Schubert cells are
indeed cells of the most classical CW decomposition of F . Schubert cells are parametrized by
elements of the symmetric group Sn. Namely, the group Sn acts naturally in Cn, and hence
in F , and for every w ∈ Sn, there exists a unique Schubert cell, which contains the w-image
of the standard flag F0. We denote this cell by Cw. Its complex dimension is equal to the
length of w, i.e., the minimal ` in a decomposition

w = si1si2⋯si` ,

where si ∈ Sn are the elementary transpositions. The number of Schubert cells of complex
dimension m is the coefficient at tm in the polynomial

n

∏
k=1

(1 + t + . . . + tk).

In particular, there is a unique 0-dimensional cell, which is F0 and a unique
n(n + 1)

2
-

dimensional cell, which is dense in F .
The closure Xw of a Schubert cell Cw is called a Schubert variety. The Schubert variety Xw is

the union of the Schubert cell Cw and all Schubert cells Cw′ corresponding to permutations w′
which precede w with respect to the natural partial ordering of Sn. In particular, every
Schubert variety contains the point F0.

With a Schubert variety Xw, we associate two subsets of the tangent space TF0F :

● the tangent cone Tw, which is the set of vectors tangent to Xw at F0;
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● the Zariski tangent space Zw which is spanned by Tw.

The tangent cones Tw are algebraic subvarieties of TF0F ; they have the same dimensions
as Xw (and Cw). The tangent cone Tw and tangent space Zw (as well as their dimensions)
coincide if and only if F0 is not a singular point of Xw.

Certainly, the Schubert varieties Xw and Xw′ coincide only when w = w′; however, the
equalities Zw = Zw′ or Tw = Tw′ may occur for w ≠ w′ (since the second implies the first, the
first occurs “more often” than the second).

For the further discussion, let us introduce the most natural local coordinate system in a
(Zariski) neighborhood of F0 in F . For a flag {Vk} sufficiently “close” to F0, there exists a
unique “triangular” basis in Cn,

v1 = (1, x21, . . . , xn1), v2 = (0,1, x32, . . . , xn2), . . . vn = (0, . . . ,0,1),

such that Vk is spanned by v1, . . . , vk. The numbers aij , i > j are coordinates of the flag {Vk}
(with F0 = (0, . . . ,0)); the same numbers may be regarded as coordinates in TF0F . (This
coordinate system provides a natural identification of TF0F with the space n− of strictly
lower triangular matrices.) When n is not too large, we will use the more convenient notations
xi = xi,i+1, yi = xi,i+2, etc.

Zariski tangent spaces Zw were thoroughly studied, see [15, 12, 2] and references therein.
The following result of Lakshmibai [12] provides an explicit description of Zw. The space Zw,
viewed as a subspace of n−, is the linear span of the elements eα of the Chevalley basis, such
that

α ∈ R+
∣ sα ≥ w,

where sα ∈ Sn is the reflection associated with α and ≥ is the Bruhat order. The above result,
of course, answers the question, under which condition two different Schubert varieties Xw
and Xw′ have the same Zariski tangent space. On the contrary, the structure of tangent
cones Tw, although it has been an active area of research (see [2, 4, 5, 6, 3] and references
therein), is not well understood, in particular, the problem of their coincidence is mostly
open.

Let us consider some examples. If n = 3, then dimF = 3 and the local coordinates are
x1, x2, y. There are 6 Schubert varieties of dimensions 0,1,1,2,2,3, and the middle four are:

X(132) = {V1 = C1
}, X(213) = {V2 = C2

}, X(231) = {V1 ⊂ C2
}, X(312) = {V2 ⊃ C1

}.

In our local coordinates these are x1 = y = 0, x2 = y = 0, y = 0, y = x1x2, respectively. We see
that, within the domain of our coordinate system, X(231) is the tangent plane (at the origin)
to X(312); thus T(231) = T(312) = Z(231) = Z(312).

The first examples of singular Schubert varieties appear when n = 4. There are two of
them:

X(3412) = {V1 ⊂ C3, C1
⊂ V3} and X(4231) = {V2 ∩C2

≠ 0}.

Our local coordinates in the 6-dimensional manifold F are x1, x2, x3, y1, y2, z, the equations
of the two Schubert varieties are z = 0, y1x3 + x1y2 − x1x2x3 = 0 and y1y2 − zx2 = 0 and the
tangent cones are, respectively, the cone y1x3 +x1y2 = 0 in the hyperplane z = 0 and the cone
y1y2 − zx2 = 0. in the whole space TF0F . It is not difficult to observe that the 24 Schubert
varieties have 16 different tangent cones and 14 different tangent spaces.
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For n = 5, we observe not only singular, but also reducible tangent cones (the Schubert
varieties themselves are always irreducible). Moreover, different tangent cones can share com-
ponents and even contain each other. The simplest example is provided by the 8-dimensional
Schubert varieties

X(35421) = {V1 ⊂ C3
}, X(43521) = {V2 ⊂ C4

} and X(45231) = {V1 ⊂ C4,C2
∩ V3 ≠ 0}.

With respect to the local coordinates x1, x2, x3, x4, y1, y2, y3, z1, z2, t, the first two varieties
(and hence their tangent cones) are linear subspaces z1 = t = 0 and z2 = t = 0, while the third

one is described by the equations t = 0,det

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y1 x2 1
z1 y2 x3
0 z2 y3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0. This shows that the tangent

cone T(45231) is {t = z1z2 = 0}, and this is the union T(35421) ∪ T(435231).
In this paper, we study the structure of the tangent cones Tw with the emphasis on the

problem of their coincidence. Let us mention two cases when the coincidence of these tangent
cones is known, or can be easily proved. The first one is the equality Tw = Tw−1 which holds
for every permutation w. This fact was conjectured (and checked for n ≤ 5) in [6]; however,
a short direct proof can be easily given, see Section 5.7. The second case is that of Coxeter
elements of the permutation group. Recall that an element w ∈ Sn is called a Coxeter element,
if it is of length n − 1 and can be written in the form

w = si1si2⋯sin−1

in such a way that every transposition si, for i = 1,2, . . . , n − 1 enters the above product
exactly once. The group Sn has 2n−2 different Coxeter elements. The Schubert varieties
which correspond to the Coxeter elements of Sn have the same tangent cone; this follows
from the fact that these Schubert varieties are non-singular at F0, and hence their tangent
cones coincide with their Zariski tangent spaces (see Section 3.4 for details). By the way, our
example of coinciding tangent cones for n = 3 represents both cases: the permutations (1,3,2)
and (3,2,1) are Coxeter elements inverse to each other. For n = 4, all pairs of permutations
with equal tangent cones are either Coxeter, or inverse to each other. However, for n = 5,
there appear pairs of non-inverse and non-Coxeter permutations with equal tangent cones;
the first example of such a pair is (13452), (13524).

We develope an efficient method to recognize when the tangent cones of two Schubert
varieties coincide. The main ingredient of this method is the notion of a pillar entry. Every
Schubert cell of the flag variety is determined by the (n+1)×(n+1) matrix of dimensions rij
of the intersections Vi ∩ Cj called the rank matrix; the corresponding Schubert variety is
determined by inequalities dim(Vi ∩ Cj) ≥ ri,j . For example, if [rij] is the rank matrix
corresponding to a permutation w, then the rank matrix corresponding to w−1 is obtained
from [rij] by a transposition. In Section 5.6, we prove that the whole matrix [rij] is de-
termined by a relatively small set of entries, which we call pillar entries (see Section 2.3 for
a precise definition). Note that the notion of pillar entry is very close (yet different from)
Fulton’s notion of essential set [8], see the Appendix for a comparison.

We conjecture that if Tw = Tw′ , then the pillar entries for w′ are obtained from pillar entries
for w by a partial transposition: if r′ij is a pillar entry for w′, then precisely the entries one

of rij , rji is a pillar entry for w, and this entry is equal to r′ij (and the same is true with

the exchange r ↔ r′); see Section 2.4, Conjecture 2.11 for a precise statement. However,
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the converse of this conjecture is false: examples show that a partial transposition of the
set of pillar entries may lead to a set of entries which is not the set of pillar entries for any
transposition, or is a set of pillar entries os a transposition of a different length. Some pillar
entries are “linked,” that is, they can be transposed or not transposed only simultaneously.

In Sections 3.2 and 3.3, we give some definition of a linkage, and hence of “admissible
partial transposition”; our main result is Theorem 3.6, which states that an admissible partial
transposition of pillars entries of w provides a set of pillar entries of some w′, and that in this
case Tw = Tw′ . However, examples show that our definition of linkage is not sufficient: there
are partial transpositions of pillar entries, which are not admissible in our sense, but which
still preserve the tangent cone.

We also provide a number of examples and several enumerative results in small dimension
and codimension. We were led by the numeric examples to the following “2m-conjecture”
(which is also closely related with the earlier mentioned conjecture): the number of Schubert
varieties with an identical tangent cone is always a power of 2.

Let us mention that the problem of classification of tangent cones of Schubert varieties is
closely related to the problem of classification of coadjoint orbits of the unitriangular group,
see [11, 1] and the recent work [14]. As we already said, the tangent space to the flag variety
is naturally identified with the nilpotent Lie algebra of lower-triangular matrices, and with
the dual space of the Lie algebra of upper-triangular matrices:

TF0F ≃ n− ≃ n∗+.

The B-action on TF0F then coincides with the coadjoint action. Every tangent cone Tw is
B-invariant, as well as any irreducible component of Tw; thus, it is a set of B-orbits. However,
it is not true that B-orbits and irreducible components of tangent cones are the same thing.
The first example which demonstrates this appears in S6: the 6-dimensional tangent cone
T(146252) is a union of 5-dimensional B-orbits. We will not discuss this phenomenon in this
paper.

2. Basic notions

We recall the classical notion (and some properties) of rank matrix associated with two
flags. Rank matrices provide a combinatorial way to characterize Schubert varieties and
Schubert cells. Indeed, one of these flags will be chosen as the standard flag, so that the rank
matrix coincides with the rank function of the corresponding permutation; see [9, 8]. We
then define the notion of pillar entry of a rank matrix which is crucial for us.

We formulate our first conjecture that if two permutations, w and w′, have identical tangent
cones: Tw = Tw′ , then the pillar entries of the corresponding rank matrices either coincide or
transposed to each other.

2.1. Rank matrix. For any flag, the rank matrix is the (n+1)×(n+1) matrix r = [rij] with
the integer entries

rij = dimVi ∩Cj , 0 ≤ i, j ≤ n.

The rank matrix is independent of the choice of a flag in a B-orbit. Moreover, it completely
characterizes the corresponding B-orbit. More precisely, two different flags, F ∈ Cw and
F ′ ∈ Cw′ , have the same rank matrix if and only if w = w′; see, e.g., [9]. We will denote
by r(w) the rank matrix corresponding to the Schubert cell Cw.
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Obviously, one has:

r0k = rk,0 = 0; rk,n = rn,k = k; rij + ri+1,j+1 ≥ ri+1,j + ri,j+1.

The following statement is due to [8], see also [9] p.157. The Schubert cell Cw consists in
flags such that the corresponding rank matrix is:

(1) rij = #{r ≤ i ∣ w(r) ≤ j}.

Example 2.1. The rank matrices r(w) and r(w−1) are transposed to each other. In this
case, one has:

Tw = Tw−1 .

This statement was conjectured (and checked for n ≤ 5) in [6]. However a short direct proof
can be easily given, see Section 5.7.

2.2. Permutation diagram. The permutation w ∈ Sn can be easily recovered from the rank
matrix.

Definition 2.2. Given a permutation w ∈ Sn, the diagram of w is defined with the following
convention. In an (n + 1) × (n + 1) grid, with row and columns numbered form 0 to n, we
place a dot in the upper left corner of the cell with coordinates (i, j) whenever j = w(i).

To make this visible, we usually put a ● into the matrix, so that the permutation is encoded
by the bullets.

Proposition 2.3. If the rank matrix r(w) is locally as follows:

a a

a
●

a + 1

where a + 1 is the value in position (i, j), then the permutation w sends i to j.

Proof. This readily follows from (1). �

Example 2.4. Consider the case of dimension 4. a) The matrices

0 0 0 0 0

0 0 0 0
●

1

0 0 0
●

1 2

0 0
●

1 2 3

0
●

1 2 3 4

0 0 0 0 0

0
●

1 1 1 1

0 1
●

2 2 2

0 1 2
●

3 3

0 1 2 3
●

4

are the rank matrices corresponding to the longest element w0 = 4 3 2 1 and the identity
element w = 1 2 3 4 respectively.

b) The following matrices:

0 0 0 0 0

0 0
●

1○ 1 1

0 0 1
●

2○ 2

0 0 1 2
●

3

0
●

1 2 3 4

0 0 0 0 0

0 0
●

1○ 1 1

0 0 1 1
●

2

0
●

1 2○ 2 3

0 1 2
●

3 4

0 0 0 0 0

0 0 0
●

1 1

0
●

1○ 1 2○ 2

0 1 1 2
●

3

0 1
●

2 3 4

0 0 0 0 0

0 0 0 0
●

1

0
●

1○ 1 1 2

0 1
●

2○ 2 3

0 1 2
●

3 4
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are the rank matrices corresponding to the four Coxeter elements in S4:

s1s2s3 = 2 3 4 1, s1s3s2 = 2 4 1 3, s2s1s3 = 3 1 4 2, s3s2s1 = 4 1 2 3,

respectively. Note that the Schubert varieties of Coxeter elements are smooth at F0.
c) Consider the elements w1 = 3 4 1 2 and w2 = 4 2 3 1 of S4. The corresponding rank

matrices are
0 0 0 0 0

0 0 0
●

1○ 1

0 0 0 1
●

2

0
●

1○ 1 2 3

0 1
●

2 3 4

and

0 0 0 0 0

0 0 0 0
●

1

0 0
●

1○ 1 2

0 0 1
●

2 3

0
●

1 2 3 4

The Schubert varieties Xw1 and Xw2 are the only singular Schubert varieties for n = 4, cf. [13].

The encircled entries will be later called “pillar”, these entries determine the whole matrix,
as explained in the next paragraph.

Example 2.5. For the maximal cell Cw0 , the rank matrix is given by:

rij(w0) = max{0, i + j − n}.

The smaller is the Schubert cell Cw, the bigger are the numbers rij(w).

2.3. The pillar entries. It turns out that the rank matrix is completely determined by a
few particular entries. The following notion is crucial for us.

Definition 2.6. An entry rij of a rank matrix r(w) is called pillar if it satisfies the conditions

(2)

⎧⎪⎪
⎨
⎪⎪⎩

rij = ri−1 j + 1 = ri j−1 + 1,

rij = ri+1 j = ri j+1.

In other words, the fragment of the rank matrix around a pillar entry is as follows:

a − 1

a − 1 a○ a

a

We always encircle the pillar entries, in order to distinguish them.
In combinatorial terms, pillar entries can be characterized as follows. An entry rij of a

rank matrix r(w) is pillar if and only if

(3)

⎧⎪⎪
⎨
⎪⎪⎩

w(i) ≤ j, w(i + 1) > j,

w−1(j) ≤ i, w−1(j + 1) > i.

It is easy to see that these conditions are equivalent to (2).

Proposition 2.7. Every Schubert cell is completely determined by the pillar entries of the
rank matrix.

We postpone the proof of the proposition to Section 5.6.

Remark 2.8. An algorithm that reconstructs the permutation w from the pillar entries of
the rank matrix r(w) will be presented in Section 4.2.
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Example 2.9 (Pillars of the Coxeter elements). It can be deduced from formula (3), that the
rank matrix of every Coxeter element of Sn is determined by a sequence of n − 2 inclusions:

Vi ⊂ Ci+1, or Ci ⊂ Vi+1,

for i ∈ {1, . . . , n − 2}. The 2n−2 Coxeter elements correspond to an arbitrary choice of one of
the above inclusions for every i. This gives n − 2 pillar entries ri,i+1 = i or ri+1,i = i, for each
i ∈ {1,2, . . . , n− 2} in the rank matrix. We will show in Section 3.4 that all Coxeter elements
have the same tangent cone.

Remark 2.10. An entry rij of a rank matrix r(w) is called essential, see [8] and also [7], if

(4)

⎧⎪⎪
⎨
⎪⎪⎩

w(i) > j, w(i + 1) ≤ j,

w−1(j) > i, w−1(j + 1) ≤ i.

Equivalently, the rank matrix around an essential entry is as follows:

a

a a a + 1

a + 1

It is proved in [8] that every rank matrix (and therefore the corresponding Schubert variety)
is completely characterized by its essential set.

The notions of essential and pillar entries are somewhat “complementary”, as the inequality
signs in formulas (3) and (4) are reversed, cf. Appendix for a comparison.

We believe that the notion of pillar entry (and its relation to Fulton’s essential entries;
see [8]) deserve a further study. In particular, the number of pillar entries for a given permu-
tation is an interesting characteristic. Some of the basic properties of pillar entries will be
presented in Section 4.

2.4. The necessary condition: transposed pillars. The following conjecture asserts that
if two Schubert varieties have the same tangent cones, then they have the same number of
pillars, whose values are also the same, and whose position in the respective rank matrices
can only differ by transposition.

Conjecture 2.11. Given two permutations, w,w′ ∈ Sn, if Tw = Tw′ then the rank matri-
ces r(w) and r(w′) have the same number of pillar entries, and for every pillar entry rij
of r(w), one has the following alternative:

a) the entry r′ij of r(w′) is pillar and r′ij = rij, or

b) the entry r′ji of r(w′) is pillar and r′ji = rij.

Examples 2.1 and 2.9 are the first examples that confirm our conjecture. We will give
many other examples in the sequel.

2.5. Restrictions: forbidden transpositions. Note that the inverse of Conjecture 2.11 is
false: two permutations with partially transposed pillar entries do not necessarily correspond
to the same tangent cones.
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bc
bc

bc
b

b

b

b
b

b

1 bc
3

0 0 0 0 0 0
10 0 0 0 1
20 0 0 0 1 2

0 0 0 0 1 2 3
0 0 0 1 2 3 4
0 0 1 2 3 4 5
0 1 2 3 4 5 6

0 0 0 0 0 0 0
1
2

4
5
60 1 2 3 4 5

0
0
0
0
0

0 b

b
b

b
b

b

0 0 0 0 1
0 0 0 1 2
0 0 0 1 2
1 1 1 2 3
1 1 2 3 4

Example 2.12. The simplest counterexample to the converse statement that we know is
provided by the following permutations in S6: w = 456321 and w′ = 564132. Indeed, the
corresponding rank matrices are:
respectively. The pillar entries are (partially) transposed, but the permutations have different
length: `(w) = 12 and `(w′) = 11, so that their tangent cones have different dimensions, and
cannot coincide.

Note however the following interesting inclusion: Tw′ ⊂ Tw.

Another restriction for partial transposition of pillars occurs more often than the above
discussed one. Given a permutation w and the corresponding rank matrix r(w), then a partial
transposition of the pillar entries may not correspond to any rank matrix of any permutation.

Example 2.13. Consider the permutation w = 3 4 5 2 1 in S5. The corresponding rank matrix
is:

0 0 0 0 0 0

0 0 0
●

1○ 1 1

0 0 0 1
●

2○ 2

0 0 0 1 2
●

3

0 0
●

1 2 3 4

0
●

1 2 3 4 5

It turns out that there are no rank matrices with the following pillar entries:

a)

0 0 0 0 0 0
0 1○ 1
0 2
0 3
0 2○ 4
0 1 2 3 4 5

b)

0 0 0 0 0 0
0 1
0 2○ 2
0 1○ 3
0 4
0 1 2 3 4 5

Indeed, consider the case a). One has: C1 ⊂ V3, and V2 ⊂ C4. But, these conditions imply
stronger ones: either C1 ⊂ V2, or V3 ⊂ C4. The corresponding rank matrices are

a1)

0 0 0 0 0 0

0 0
●

1○ 1 1 1

0 0 1 1 1
●

2

0 0 1 1
●

2 3

0
●

1 2○ 2 3 4

0 1 2
●

3 4 5

a2)

0 0 0 0 0 0

0 0 0
●

1○ 1 1

0 0 0 1 1
●

2

0 0
●

1 2 2 3

0
●

1 2 3○ 3 4

0 1 2 3
●

4 5
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In both cases, a1) and a2), the corresponding permutations have length different from `(w),
so that their tangent cones are different from Tw. The case b) is similar. In fact, the only
other permutation w′, such that Tw = Tw′ in the above example is w′ = w−1, that corresponds
to the transposed rank matrix.

2.6. More on partial transpositions. Let us briefly discuss the partial transpositions of
linked pillar entries. If one transpose some pillar entries of a rank matrix r(w), but not all
of them, then the following four possibilities may occur:

1) the resulting matrix is not a rank matrix of a permutation.
2) the resulting matrix is the rank matrix of some permutation w′ that has a different set

of pillar entries (cf. Example 2.13);
3) the resulting matrix is the rank matrix of a permutation w′ that does have the given

set of pillar entries, but of different length (cf. Example 2.12);
4) the “good case” where the resulting matrix is a rank matrix of a permutation that has

the given set of pillar entries and the same tangent cone as w.

In view of Conjecture 2.11 and the above discussion, the main goal of this paper is to
investigate which (partial) transpositions of pillar entries of a rank matrix r(w) lead to a new
permutation w′ and do not change the tangent cone.

3. Admissible partial transpositions

In this section we describe classes of permutations in Sn with identical tangent cones. Given
a permutation w, we define a series of operations called “admissible partial transpositions”
and an equivalence class in Sn that consist of permutations related by such transpositions.
We will prove that all permutations from such a class correspond to the same tangent cone.

However, the described classes are not maximal. Examples in the end of the section show
that there are more permutations with identical tangent cones.

3.1. Linked and dissociated pillar entries. We define an equivalence relation on the set
of pillar entries of a rank matrix. Roughly speaking, two pillar entries are in the same class
if they are “close enough” to each other.

Definition 3.1. Given a permutation w ∈ Sn, and let rij and ri′j′ be two pillar entries in the
rank matrix rij(w). These pillar entries are called related if the intervals:

[min (i, j), max (i, j)] and [min (i′, j′), max (i′, j′)]

have a commun interior point.

bc bc bc
bc

bc

bc

bc
bc

Figure 1. Configurations for two related pillars
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Otherwise the pillar entries are called dissociated.

bc

bc

bc

bc

Figure 2. Configurations for two dissociated pillars

Figure 3.9 and Figure 2 in the case of 2 pillar entries present all possible configurations of
related and dissociated pillar entries (up to their transpositions), respectively.

Example 3.2. The following rank matrix (in which we omit the extremal rows and columns)
corresponding to the permutation w = 12 2 9 7 6 4 10 5 3 11 1 8 ∈ S12:

have three equivalence classes of linked pillar entries:

{r22 = 1}, {r64 = 2}, {r67 = 4, r69 = 5, r97 = 6, r9,10 = 8, r11,7 = 7}.

3.2. The linking graph of pillar entries. It is convenient to display the linking relations
between the pillar entries using a graph.

Definition 3.3. The linking graph is defined as follows.

(1) The set of vertices of the linking graph is the set of pillar entries of the rank matrix;
(2) two vertices are connected by an edge whenever the corresponding pillar entries are

related, cf. item (i) of Definition 3.1.

For instance, Example 3.2 corresponds to the following graph

1 2 4 5 6 7 8

where we have labeled the vertices by the values of the pillar entries (omitting the positions
as the values are all different).

The connected components of the linking graph corresponds to the equivalence classes.
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3.3. Admissible partial transpositions. An admissible partial transposition is an opera-
tion defined on rank matrices and on the group Sn. Roughly speaking, it consists in trans-
position of a part of the pillar entries, such that linked pillar entries transpose (or not)
simultaneously. More precisely, we have the following:

Definition 3.4. Two rank matrices, r(w) and r(w′), are admissibly partially transpose to
each other if there exists a set L which is a union of equivalence classes of linked pillar entries
for r(w), such that the set of pillar entries of r(w′) is as follows

(5)

⎧⎪⎪
⎨
⎪⎪⎩

r′ij = rij whenever rij /∈ L

r′ji = rij whenever rij ∈ L.

Example 3.5. The permutation w = 11 2 9 8 6 4 5 12 3 7 10 1 ∈ S12 corresponding to the rank
matrix

is admissibly partially transpose to the permutation given in Example 3.2. Indeed, the set of
pillar entries is the same except for the last equivalence class for which the positions of the
pillar entries are all in the transpose positions.

3.4. Statement of the main theorem. In this section we formulate a sufficient condition
for the tangent cones of two Schubert varieties to coincide. Furthermore, it turns out that
every partial transposition of the pillar entries in the associated rank matrices defines an
operation on the group Sn.

Our main result is the following

Theorem 3.6. (i) Given a permutation w ∈ Sn and the corresponding rank matrix r(w), for
every admissible partial transposition, r(w)′, of r(w) there exists a permutation w′ ∈ Sn such
that r(w)′ = r(w′).

(ii) If w and w′ are admissibly partially transpose to each other, then corresponding Shubert
varieties have same tangent cones: Tw = Tw′.

We will prove this theorem in Sections 4.5 and 5.7.

Example 3.7. The Coxeter elements of S4, see Example 2.4, have the same two dissociated
pillar entries, 1 and 2, and their positions in the rank matrices differ by transpositions.
Therefore, the Schubert varieties corresponding to these elements have the same tangent
cone. This statement can be generalized, see below
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Corollary 3.8. Schubert varieties corresponding to the Coxeter elements have the same
tangent cone.

Proof. The pillar entries of Coxeter elements are dissociated and differ by partial transposi-
tions; see Example 2.9. �

Note also that the Schubert varieties corresponding to the Coxeter elements are smooth.
Therefore, Corollary 3.8 can also be deduced from the theorem of Lakshmibai, see [12] that
describes the Zariski tangent space.

3.5. Other admissible transpositions. Theorem 3.6 provides large classes of Schubert
varieties with identical tangent cones. However, these classes can be yet larger. In fact, there
are other cases of partial transposition of pillar entries than those considered above.

Example 3.9. The permutations w = 6745321 and w′ = 6753421 in S7 have the following
rank matrices:

bc

bcbc
b

b

b

b

b
b

1

bc

0 0 0 0 0 0
10 0 0 0

1
20 0 0 0 1

0 0 0

0

1 2 3
0 0 0 1 2 3 4
0 0 1 2 3 4 5
0 1 2 3 4 5 6

0 0 0 0 0 0 0
1

4
0 1 3 4 5

0
0
0
0
0

0 b

b
b

b

b
b

0 0 0 0

1

0 0 0 1
20 0 0 1

2
11 2 3

2
3

0
0
0
0
0
0
0
0 1 2 3 4 5 6 7

b

0

0
1
2
3
4
5
6
76543210

b

0
00

0
00

0
0

0

The rank matrix r(w) has two pillar entries: r16 and r34, the interval [3,4] is entirely con-
tained in the interval [1,6]. Therefore, these pillar entries of w are related in view of Defini-
tion 3.1. However, it is easy to check that Tw = Tw′ , in other words, the partial transposition
relating w and w′ should also be considered as admissible.

This example is not covered by Theorem 3.6 and shows its limits. For instance, it shows
that the converse statement to Part (ii) of the theorem is false. Existence of such partial
transpositions of pillar entries constitutes the main difficulty in solving the initial classification
problem.

4. Combinatorial aspects of rank matrices and pillar entries

In this section we describe the main properties of pillar entries of rank matrices and develop
the technique necessary from the proof of our main result.

Recall that the set of pillar entries of a rank matrix r(w) determines the permutation w
(see Proposition 2.7). We present two algorithms: that of reconstruction of w from the pillar
entries of r(w), and that of calculating of the permutation of w′ obtained by some partial
transpositions of pillar entries of r(w). This allows us to prove Part (i) of Theorem 3.6.

We also give an explicit formula for the (co)dimension of the Schubert cell Cw in terms of
the pillar entries of the rank matrix r(w). This result can be useful for the further study of
combinatorics of rank matrices.



ON TANGENT CONES OF SCHUBERT VARIETIES 13

4.1. Rank matrix and its pillar entries from the permutation diagram. The rank
matrix r(w) is determined by the diagram of the corresponding permutation w.

Proposition 4.1. One has the following formula:

(6) rij(w) = #{dots in the upper left quadrant from the cell (i, j)}.

Proof. This readily follows from (1). �

The positions of the pillar entries in r(w) can be determined by local structure of the
diagram of w. Consider horizontal strips of height 1 and a vertical strips of width 1 in
the diagram, such that the upper left and the lower right corners are marked dots of the
permutation:

b

b

b

b

horizontal strip

vertical strip

Proposition 4.2. Every pillar is located at the intersection of a horizontal strip of height 1
and a vertical strip of width 1.

Proof. This is a direct consequence of (3). �

Example 4.3. Rank matrix and its pillar entries of w = 953471682 in S9 is as follows.

bc
bc

bcbc
bc

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1

1

2

0

0

0

0

0

0

0

0 0

0 0

0

1 1 2 2 2

2

3

1 2 3 3 3

3

4

0 1 2 3 3 4

4

5

1 1 2 3 4 4 5

5

6

1 1 2 3 4 5 6

6

7

1 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

b

b

b

b

b

b

b

b

b

7

b

b

b

b

b

b

b

b

b

It will be useful in the sequel to have the following observation.

Proposition 4.4. Every horizontal strip of height 1 necessarily intersects with a vertical
strip of width 1, and vice-versa.

Proof. This statement can be easily proved by induction in the length (height) of the strips.
�
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4.2. Reconstructing w from the pillar entries of r(w). In this section we present an
algorithm of construction of the diagram of w from the set of pillar entries.

Let us introduce some useful notation. First we enumerate the pillar entries (from 1 to N)
in the “reading order” of their appearance in the diagram of w, i.e., from left to right in each
row, and counting the rows from top to bottom. We then set:

(pi, qi) = the position of the i-th pillar;

Ki ∶= rpiqi(w) = the value of the i-th pillar
i.e. the number of dots in the region at the North-West of (pi, qi);

ki = the number of dots in the part of the North-West region
of the i-th pillar that does not intersect
the North-West regions of the preceding pillar entries.

The diagram of w is constructed in N + 1 steps (N is the number of pillar entries).

● The i-th step, for i ≤ N , consists in marking ki dots from right-to-left and top-to-
bottom:

⋰

●

●

●

⋰

in the North-West region of the i-th pillar. The dots are placed at the intersections
of the columns and rows which are closest to the i-th pillar, that have no marked
dot yet, and do not intersect with the North-West regions of all the preceding pillar
entries.

● The final, (N + 1)-th step consists in marking dots in the same order (from right to
left, top to bottom) in the remaining free lines.

The above algorithm is the only way to mark dots without creating an extra pillar or
changing the values of the pillar entries. It has some similarities with the algorithm of [7]
reconstructing w from the Fulton essential set.

Example 4.5. Figure 3 below illustrates our algorithm for w = 853471692 ∈ S9. At each step
we color the North-West region at the pillar. The dark grey part of the region intersects with
North-West regions at previous pillar entries; the light grey part is the area where the new
dots are placed.

Remark 4.6. If one defines the following partial ordering on the set of ordered pillar entries

j ≺ i ⇐⇒ the j-th pillar lies in the region at the North-West of the i-th pillar

i.e. j < i , pj ≤ pi and qj ≤ qi

one can write the following relation between the Ki’s and ki’s

Ki = ki +∑
j≺i
kj .
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b bc
bc

bcbc
bc

1

3

1 4

7

b bc
bc

bcbc
bc

1

3

1 4

b

b

7

b bc
bc

bcbc
bc

1

3

1 4

b

b

b

7

b bc
bc

bcbc
bc

1

3

1 4

b

b

b

7

b bc
bc

bcbc
bc

1

3

1 4

b

b

b

b

b
7

b

b

b bc
bc

bcbc
bc

1

3

1 4

b

b

b

b

b

b

b

7

Figure 3. Recovering the permutation w from the pillar entries.

4.3. (Co)dimension from the set of pillar entries. The dimension and codimension of
a Schubert cell Cw (or a Schubert variety Xw) can be computed directly form the set of pillar
entries of the corresponding rank matrix r(w).

The number

codim(Cw) = `(ww0) = #{i < j ∶ w(i) < w(j)}

can be obtained in the diagram of w counting the intersections of the horizontal segments
and the vertical segments of the grid that are at the right and above each dots, respectively:

(7) codim(Cw) = #{crosses in the diagram of w},

see Figure 4.
The following formula gives the codimension of a Schubert cell from the data of its pillar

entries.

Theorem 4.7. Using the notation of Section 4.2 one computes

(8) codim(Cw) =
N

∑
i=1

ki (Ki + n − pi − qi).

Proof. This formula is obtained using the reconstruction algorithm of w from the set of pillar
entries (see Section 4.2) and (7). For each dot in the diagram of w, we count the crosses
on the horizontal segment at its right. At step i of the construction, the ki new dots will
contribute with the same number of crosses in (7). The reconstruction algorithm of w implies
that these crosses can be produced only by the dots that are located at the South-East of the
i-th pillar (otherwise it would contradict the fact that one uses the closest available vertical
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b

b

b

b

b

b

b

b

b

× × ×
× × × ×

× × ×
×
×××
×

×

Figure 4. `(ww0) from the diagram of w.

lines at the left of the i-th pillar). The number of dots in the South-East area is easy to
compute from our data:

#{dots at SE} = #{dots} −#{dots at NW} −#{dots at NE} −#{dots at SW}

= n −Ki − (pi −Ki) − (qi −Ki)

= Ki + n − pi − qi.

Hence the result. �

4.4. Truncated permutation. Given a permutation of w ∈ Sn, we will show the existence
of permutations whose pillar entries form subsets in the set of pillar entries of r(w).

The pillar entries of r(w) are decomposed in the disjoint union of equivalence classes of
linked pillar entries: {rij(w)} = L1 ⊔L2 ⊔ . . . ⊔Ls. These classes will be ordered as follows

(9) u < v Ô⇒ min(i, j ∶ rij(w) ∈ Lu) < min(i, j ∶ rij(w) ∈ Lv).

The following statement follows from the reconstruction algorithm of Section 4.2.

Proposition 4.8. For every t ∈ {1, . . . , s} there exists a unique permutation, denoted trct(w),
having L1 ⊔L2 ⊔ . . . ⊔Lt as set of pillar entries.

Proof. This permutation is obtained by stopping the algorithm of reconstruction of w given
in Section 4.2 after the step corresponding to the last pillar of the class Lt and jumping to
the final step. �

Example 4.9. For w = (12,2,9,7,6,4,10,5,3,11,1,8) as in Example 3.2, the classes are
numbered as follows

L1 = {r22 = 1}, L2 = {r64 = 2}, L3 = {r67 = 4, r69 = 5, r97 = 6, r910 = 8, r117 = 7}.

One then obtains the truncated permutations

trc1(w) = (12,2,3,11,10,9,8,7,6,5,4,1), trc2(w) = (12,2,11,10,9,4,8,7,6,5,3,1).
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4.5. Elementary partial transpositions. The order (9) suggests a natural series of admis-
sible partial transpositions, such that all the equivalence classes of pillar entries Li transpose
for i less or equal to some value. In this section we present en explicit algorithm of calculating
the resulting permutations. This algorithm is the main ingredient of the proof of Part (i) of
Theorem 3.6.

For t ∈ {1, . . . , s}, we define the elementary partial transposition w′ = trpt(w), as the
permutation having the following set of pillar entries:

⎧⎪⎪
⎨
⎪⎪⎩

rji(w
′) = rij(w), if rij(w) ∈ L1 ⊔ . . . ⊔Lt;

rij(w
′) = rij(w), if rij(w) ∈ Lt+1 ⊔ . . . ⊔Ls.

Note that every partial transposition can be obtained as a sequence of elementary partial
transpositions.

Given a permutation w = w1w2 . . .wn ∈ Sn, the entry wk of w are separated into two disjoint
groups, I1 ⊔ I2:

⎧⎪⎪
⎨
⎪⎪⎩

wk ∈ I1, if k ≤ max(j), for pillars rij(w) ∈ L1 ⊔ . . . ⊔Lt;

wk ∈ I2, if k > min(i), for pillars rij(w) ∈ Lt+1 ⊔ . . . ⊔Ls.

The algorithm of calculation the permutation w′ = w′
1w

′
2 . . .w

′
n, obtained via the above ele-

mentary partial transposition, consists in three steps:

(1) keep w′
k = wk ∈ I1 if wk ≤ k, and w′

k = wk ∈ I2 if wk ≥ k;
(2) inverse the entries wk ∈ I1, i.e., write k at position wk;
(3) fill the remaining positions in w′ in the decreasing order.

The proof of the above algorithm is straightforward.

Example 4.10. For the Coxeter element w = 2 3 4 1 ∈ S4, the elementary transposition

0 0 0 0 0

0 0
●

1○ 1 1

0 0 1
●

2○ 2

0 0 1 2
●

3

0
●

1 2 3 4

Ð→

0 0 0 0 0

0 0 0
●

1 1

0
●

1○ 1 2○ 2

0 1 1 2
●

3

0 1
●

2 3 4

is obtained into three steps:

2 3 ∣4 1 → 2 . ∣4 . → .1 ∣4 . → 3 1 ∣4 2,

so that w′ = 3 1 4 2 is another Coxeter element, already considered in Example 2.4, b).

For every w ∈ Sn, the above algorithm implies the existence of a permutation w′ such that
the pillar entries of r(w′) are obtained by an admissible partial transposition of pillar entries
of r(w).

Part (i) of Theorem 3.6 is proved.

5. Proof of the main theorem

In this section, we prove Proposition 2.7 and Part (ii) of Theorem 3.6.
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5.1. A coordinate system. In the neighborhood of the standard flag F0, the flag variety F
is identified with the subgroup of unitriangular matrices

(10) X =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1

x21 1

⋮ ⋱ ⋱

xn1 ⋯ xnn−1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

This defines a local coordinate system (x21, . . . , xnn−1) on F . Given a flag F ∈ F , every
space Vi of F is defined as linear span of the first i columns of the matrix X.

Our next goal is to describe the Schubert cells and Schubert varieties in terms of this
coordinate system.

5.2. Submatrices. Let Mij be the (n−j)× i submatrix of X consisting of the last n−j rows
and the first i columns.

a) If i ≤ j, then this submatrix is of the form

Mij =
⎛
⎜
⎝

xj+11 ⋯ xj+1 i
⋮ ⋮

xn1 ⋯ xni

⎞
⎟
⎠
.

b) If i > j, then the submatrix is as follows

Mij =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

xj+11⋯ xj+1 j 1
⋮ ⋱

xi1 ⋯ xi i−1 1
⋮ ⋮

xn1 ⋯ ⋯ xni

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

5.3. Relation to the rank matrices. The following lemma translates the description of
Schubert cells in terms of rank matrices into an algebraic descripiton in the above coordinate
system.

Lemma 5.1. The matrix X represents a flag in the Schubert cell Cw if and only if

(11) rank(Mij) = i − rij(w),

for all 1 < i ≤ n, 1 ≤ j < n.

Proof. The space Cj consists of vectors with zeros at positions ≥ j + 1. One then has

j + rank(Mij) = dim(Vi +Cj) = i + j − rij(w).

Hence (11). �

It follows that the Schubert variety Xw is represented by the matrix X satisfying the
conditions: rank(Mij) ≤ i − rij(w).
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5.4. Systems of equations for Xw and Tw. The Schubert variety Xw is determined, in a
neighborhood of the standard flag F0, by a system of polynomial equations in the variables xij .
The equations are obtained as follows. For each couple of indices i, j, formula (11) leads to a
set of equations that expresses the annihilation of the minors of the matrix Mij of size larger
than its rank. From Proposition 2.7, it suffices to consider only the equations for the indices
i, j corresponding to a pillar entry rij(w) in the rank matrix of Xw.

The system of equations of the tangent cone Tw of Xw is obtained, roughly speaking, as
the homogeneous lower degree parts of the equations of Xw. More precisely, the equations
of Xw can be written in such a way that the homogeneous terms of lower degree are linearly
independent. Then the system of Tw is obtained by removing all of the monomials of higher
degree in the equations of Xw.

Example 5.2. The first example of a Schubert variety with singularity at the origin corre-
spond to the permutation w = 4231 ∈ S4 (see [2, 13]). Written in our local coordinates:

⎛
⎜
⎜
⎜
⎝

1
x 1
t y 1
v u z 1

⎞
⎟
⎟
⎟
⎠

the equation of the corresponding tangent cone Tw (the same as the equation of Xw) is:
tu − yv = 0. Indeed, the rank matrix of w is as follows:

0 0 0 0 0

0 0 0 0
●

1

0 0
●

1○ 1 2

0 0 1
●

2 3

0
●

1 2 3 4

so that the Schubert cell Cw is determined by the condition dim(V2 ∩C2) = 1, that translates
in coordinates as the condition that a certain linear combination of two first column vectors
belong to the subspace C2, i.e., the matrix M22 degenerates.

The tangent cone Tw is 5-dimensional, whereas the Zariski tangent space is the whole
6-dimensional tangent space TF0F .

5.5. The duality. In the case i ≤ j, the minors of Mij are homogeneous polynomial expres-
sions. The following observation explains the reason for which two pillar entries transposed
to each other, in many situation give the same contribution to the system of equation of the
tangent cones.

If i > j, then Mji is the complement of the upper right square submatrix in Mij (of size
i − j) with 1’s on the diagonal:

Mij =

⎛
⎜
⎜
⎜
⎝

1
⋮ ⋱

⋯ 1
Mji

⎞
⎟
⎟
⎟
⎠

.
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The lower degree homogeneous part in the expression of any minors of Mij of size r ≥ i − j
involving the last i − j columns corresponds precisely to a minor of Mji of size r − i + j, and
vice versa.

5.6. Proof of Proposition 2.7. Let us show that the pillar entries determine the rank
matrix. We use the fact that the rank matrix r(w) completely determines the Schubert
veriety Xw.

The system of equations of Xw written in the coordinate system (10) is expressed in terms
of vanishing of minors of the matrices Mij that can be calculated according to Lemma 5.1
using every entry rij of the matrix r(w). However, not all of these equations are relevant. In
the following cases:

rij = ri−1 j , or rij = ri j−1,
the equations given by rij follow from the equations given by ri−1 j , or ri j−1, respectively. In
the cases:

rij = ri+1 j + 1, or rij = ri j+1 + 1,

the equations given by rij follow from the equations given by ri+1 j , or ri j+1, respectively.
In each of the above cases, we can remove the equations given by rij from the system of
equations of Xw.

We have proved that the equations of Xw given by the entry rij is relevant if and only if rij
is the pillar entry.

5.7. Proof of Theorem 3.6. We will need the following lemma1.

Lemma 5.3. For every w ∈ Sn, the Schubert varieties Xw and Xw−1 have same tangent cone.

Proof. The homeomorphism x↦ x−1 from BwB to Bw−1B induces the isomorphism f ↦ −f
from Tw to Tw−1 . �

We are ready to prove Theorem 3.6, Part (ii). Assume that two permutations, w and w′,
are admissibly partially transpose to each other. We want to show that the tangent cones of
Xw and Xw′ coincide.

We can assume that w′ = trpt(w) is an elementary partial transposition of w, see Section 4.5
for the definition and the notation. The systems of equations for Xw and Xw′ split in two
parts: the equations coming from the pillar entries in the classes L1⊔ . . .⊔Lt (these equations
are a priori different for w and w′ since the pillar entries are not in the same positions) and
the equations coming from the pillar entries in the other classes, namely in Lt+1 ⊔ . . . ⊔ Ls.
The latter equations are identically the same for w and w′.

Consider finally the two subsystems of equations for Xw and Xw′ coming from the pillar
entries in the set L1 ⊔ . . . ⊔ Lt. These two subsystems are precisely those describing the
Schubert varieties associated to trct(w) and trct(w

′), respectively. These two varieties have
same tangent cones since trct(w) = trct(w

′)−1. After intersecting with the tangent cone of
the variety described by the rest of the system, one therefore obtains the same tangent cone
for Xw and Xw′ .

Theorem 3.6 is proved.

1We are grateful to M. Kashiwara for a simple proof.
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6. Enumerative results

Theorems 3.6 gives an efficient method for calculating the number of different tangent cones
of Schubert varieties. In this section, we give the result in small dimensions and codimensions.
The general result is still out of reach.

Recall that the total number of Schubert varieties is n!, the total number of their tangent
cones is smaller. It would be interesting to find asymptotic of the number of tangent cones.

6.1. Low-dimensional cases. In the case n = 4, the comparative number of Schubert va-
rieties and their tangent cones, as a function of their dimension, is given by the following
table.

dim 0 1 2 3 4 5 6

Schub 1 3 5 6 5 3 1

TangCones 1 3 3 3 3 2 1

The total number of tangent cones in this case is 16.
For n = 5, the table is:

dim 0 1 2 3 4 5 6 7 8 9 10

Schub 1 4 9 15 20 22 20 15 9 4 1

TangCones 1 4 6 7 9 9 10 8 6 2 1

The total number of tangent cones is 63.
For n = 6, the distribution of the tangent cones is as follows:

dim 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TangCones 1 5 10 14 20 25 31 36 40 40 34 24 15 8 3 1

The total number of tangent cones for n = 6 is 343.
For n = 7 and 8, the total numbers of tangent cones are: 1821 and 13041, respectively2.

Note that the sequence 16,63,343,1821,13041, . . . does not appear in Sloane’s online Ency-
clopedia of Integer Sequences.

6.2. Tangent cones of codimension 2. Let us also consider the case of small codimension.
The tangent cone of the Schubert variety Xw0 corresponding to longest element w0 ∈ Sn,

is the only one tangent cone of dimension
n(n−1)

2 .

Next, in the case of dimension
n(n−1)

2 − 1 (i.e., of codimension 1), there are n − 1 Schubert

varieties that have [n
2
] tangent cones. Indeed, the elements Xw and Xw−1 have the same

tangent cone.

There are
(n+2)(n−1)

2 Schubert varieties of codimension 2. The number of their tangent
cones depend on the parity of n, as given by the following statement.

Proposition 6.1. The number of tangent cones of codimension 2 is:

2 +
(n − 3)(n + 11)

8
, and 3 +

(n − 4)(n + 14)

8
,

for odd n, and for even n, respectively.

Proof. A straightforward calculation. �

2These numbers are obtained using computer programs.
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Appendix

A1 Comparison of pillar entries to essential entries. Relationship between pillar en-
tries and Fulton’s essential entries is not yet completely understood. Below are a series
examples that (partly) clarify the situation. Recall that essential entries are boxed (while
pillar entries are encercled as above).

Let us consider examples that emphasize the difference between the notions of essential
and pillar entries. The most interesting case is that of the Coxeter elements.

Example 6.2. a) The rank matrix of the element w0 = 4 3 2 1 in S4 has three essential entries

0 0 0 0 0

0 0 0 0
●

1

0 0 0
●

1 2

0 0
●

1 2 3

0
●

1 2 3 4

and no pillar entries. It can be deduced from formula (1), that, for an arbitrary n, the only
rank matrix without pillar entries is the matrix r(w0) of the longest element w0 ∈ Sn. This
matrix has n − 2 essential entries along the antidiagonal.

b) For each of the elements w1 = 2 1 4 3 and w2 = 4 2 3 1 of S4, we have two essential entries
and one pillar:

0 0 0 0 0

0 0
●

1 1 1

0
●

1 2○ 2 2

0 1 2 2
●

3

0 1 2
●

3 4

and

0 0 0 0 0

0 0 0 0
●

1

0 0
●

1○ 1 2

0 0 1
●

2 3

0
●

1 2 3 4

Note that the position of the pillar entry in the above matrices is the same, while those of
the essential entries are different.

c) For the Coxeter elements of S4, we have:

0 0 0 0 0

0 0
●

1○ 1 1

0 0 1
●

2○ 2

0 0 1 2
●

3

0
●

1 2 3 4

0 0 0 0 0

0 0
●

1○ 1 1

0 0 1 1
●

2

0
●

1 2○ 2 3

0 1 2
●

3 4

0 0 0 0 0

0 0 0
●

1 1

0
●

1○ 1 2○ 2

0 1 1 2
●

3

0 1
●

2 3 4

0 0 0 0 0

0 0 0 0
●

1

0
●

1○ 1 1 2

0 1
●

2○ 2 3

0 1 2
●

3 4

A2 Rothe diagrams and opposite Rothe diagrams. The Rothe diagram [16] of a per-
mutation w ∈ Sn is an n × n square table obtained according to the following rule. Dot the
cell (i, j) whenever w(i) = j, shade all the cells of the row at the right of the dotted cell and
all the cells of the column below the dotted cell (including the dotted cell). Note that the
length `(w) is equal to the number of white cells in the Rothe diagram.

It was noticed in [8], that the white cells having a South and East frontier with the shaded
region give the positions of the essential entries in the corresponding rank matrix. The value
of an essential entry is equal to the number of dots in the upper left quadrant of the Rothe
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diagram with the origin at the corresponding cell. Let us explain a similar rule to obtain
positions of pillar entries.

•
•

•
•

•○
•○

•
•

Table 1. The Rothe diagram (left) and the opposite Rothe diagram (right) of
the Coxeter permutation 2 3 4 1. The Rothe diagram gives the unique essential
entry in the rank matrix: r3,1 = 0, whereas the opposite diagram gives two
pillar entries: r1,2 = 1 and r2,3 = 2.

Consider the opposite Rothe diagram obtained with the following rule. Shade all the cells
of the row strictlty at the left of the dotted cell and all the cells of the column strictly above
the dotted cell (the dotted cell is not shaded). Note that the number of white undotted cells
in the opposite Rothe diagram is equal to `(w).

It follows directly from Definition 2.6, that the white cells having a South and East frontier
with the shaded region in the opposite Rothe diagram give the positions of the pillar entries
in the corresponding rank matrix. The value of a pillar entry is equal to the number of dots
in the upper left quadrant of the diagram.
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