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Abstract. We consider a family, F , of subsets of an n-set such that the cardinality of the
symmetric difference of any two elements F, F ′ ∈ F is not a multiple of 4. We prove that the
maximal size of F is bounded by 2n, unless n ≡ 3 mod 4 when it is bounded by 2n + 2. Our
method uses cubic forms on Fn

2 and the Hurwitz-Radon theory of square identities. We also
apply this theory to obtain some information about boolean cubic forms and so-called additive
quadruples.

1. Introduction and the main results

In this note, we link different subjects: extremal set theory, boolean cubic forms, non-
associative algebras and the Hurwitz theory of “square identities”.

Let F be a family of subsets of {1, 2, . . . , n}. For F, F ′ ∈ F , define the symmetric difference

F ⊕ F ′ :=
(
F \ F ′

)
∪
(
F ′ \ F

)
.

Denote by d(F, F ′) the cardinality of F ⊕ F ′, which is sometimes called the Hamming distance
between the sets F and F ′. The following is our most elementary statement.

Theorem 1. If for every distinct F, F ′ ∈ F , the distance d(F, F ′) is not a multiple of 4, then

|F| ≤

{
2n, n ≡ 0, 1, 2 mod 4

2n+ 2, n ≡ 3 mod 4.

This bound is sharp.

Note that replacing 4 by another integer, say 3 or 5, the bound for the size of F becomes
quadratic in n.

Theorem 1 belongs to the vast domain of extremal set theory, see [6] and [20] for an overview.
The classical Oddtown Theorem states: if the cardinality of every F ∈ F is odd, and that of
every intersection F ∩ F ′ is even, then |F| ≤ n, see [2, 20] and references therein. It is well-
known that the bound remains n if one switches “odd” and “even”, but if one replaces “odd”
by “even” or “even” by “odd”, then the bound becomes exponential in n. In Theorem 1, we
impose a-priori no restriction on the members of the family F .

Theorem 1 is related to the Oddtown Theorem by the formula

(1.1) d(F, F ′) = |F |+ |F ′| − 2 |F ∩ F ′|.
This suggests an idea to replace intersection of sets by symmetric difference, and parity condition
by double parity condition. The Oddtown Theorem directly implies the upper bound |F| ≤ 2n+2
for every n and |F| ≤ 2n for n ≡ 0 (mod 4). However, it seems that Theorem 1 cannot be entirely
deduced from the Oddtown Theorem by elementary methods.
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We will use linear algebra over the field F2 = {0, 1}, replacing F by a subset A ⊂ Fn
2 .

Symmetric difference of sets then corresponds to sum of vectors. However, unlike the case of the
Oddtown Theorem, the proof of Theorem 1 is not reduced to linear algebra. Using cubic forms
on Fn

2 , we deduce Theorem 1 from the celebrated Hurwitz-Radon theorem [13, 18].
The second main goal of this note is to study invariants of cubic forms on Fn

2 . The following
statement is a strengthening of Theorem 1.

Theorem 2. (i) Given a cubic form α : Fn
2 → F2 and a subset A ⊂ Fn

2 , assume that for every
x 6= x′ ∈ A one has α(x + x′) = 1, then |A| ≤ ρ(2n), where ρ is the classical Hurwitz-Radon
function.

(ii) This bound is sharp, at least in the cases n ≡ 1, 2 or 3 (mod 4).

Classification of cubic forms on Fn
2 is a fascinating problem which is solved only for n ≤ 9;

see [10, 4, 14]. The maximal cardinality of a subset A ⊂ Fn
2 such that α

∣∣
(A+A)\{0} ≡ 1 is an

interesting characteristic of a cubic form α. It resembles the Arf invariant of quadratic forms,
but of course is not enough for classification.

The paper is organized as follows. First, we interpret Hurwitz sum of square identities in
terms of extremal set theory intFn

2 . This interpretation uses the Euclidean norm in some non-
associative algebras. We then provide a construction of extremal sets reaching the upper bound
of Theorem 1.

2. Cubic forms and square identities

2.1. Hurwitz identities. A sum of square identity of size [r, s,N ] is an identity of the form

(a2
1 + · · · + a2

r) (b21 + · · · + b2s) = c21 + · · · + c2N ,

where ci are bilinear expressions in aj and bk with coefficients in Z. In [12], Hurwitz formulated
his famous problem to determine all the triples (r, s,N) such that there exists an identity of size
[r, s,N ]. The problem remains widely open, see [19] for a survey.

The Hurwitz-Radon function ρ is a function on the set of natural numbers ρ : N → N. If
N = 2n(2m + 1), then ρ(N) = ρ(2n) (i.e., it depends only on the dyadic part of N), and the
latter number is given by

ρ(2n) =

 2n+ 1, n ≡ 0 mod 4
2n, n ≡ 1, 2 mod 4
2n+ 2, n ≡ 3 mod 4.

The celebrated Hurwitz-Radon theorem [13, 18]; see also [19], is formulated as follows: there
exists an identity of size [r,N,N ] if and only if r ≤ ρ(N). This is the only case where the
Hurwitz problem is solved.

2.2. Cubic forms. A cubic form on Fn
2 is a function α : Fn

2 → F2 of the form

α(x) =
∑

1≤i≤j≤k≤n

αijk xixjxk,

where x = (x1, . . . , xn) and where αijk ∈ {0, 1}. Note that, over F2, we have x2
i = xi and

therefore every cubic polynomial can be viewed as a homogeneous cubic form.
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Consider the following cubic function:

(2.1) αO(x) =
∑

1≤i<j<k≤n

xixjxk +
∑

1≤i<j≤n

xixj +
∑

1≤i≤n

xi.

The function αO is a counting function. This means, it is invariant with respect to the action of
the group of permutations on the coordinates and depends only on the Hamming weight1 of x
that we denote by wt(x). More precisely,

αO(x) =

{
0, if wt(x) ≡ 0 mod 4

1, otherwise.

2.3. Twisted group algebras. Let f : Fn
2 × Fn

2 → F2 be a function of two variables. The
twisted group algebra associated to f is the real 2n-dimensional algebra denoted by (R[Fn

2 ], f),
with basis {ex |x ∈ Fn

2} and the product given by

ex · ex′ = (−1)f(x,x′) ex+x′ .

This algebra is, in general, neither commutative nor associative. The non-commutativity is
measured by the function

β(x, y) := f(x, y) + f(y, x),

while the non-associativity is measured by the function

δf(x, y, z) := f(y, z) + f(x+ y, z) + f(x, y + z) + f(x, y).

Many classical algebras, such as the algebras of quaternions H, of octonions O, and, more
generally, the Clifford algebras and the Cayley-Dickson algebras, can be realized as twisted
group algebras over Fn

2 ; see [1].

2.4. From cubic forms to algebra. There exists an interesting subclass of twisted group
algebras characterized by a cubic function in one variable, instead of the function f in two
variables. It was introduced and studied in [16], and we give a very short account here.

Given a cubic form α, there exists a (unique modulo coboundary) “twisting function” f
satisfying the conditions:

(a) First polarization formula:

β(x, y) = α(x+ y) + α(x) + α(y).

(b) Second polarization formula:

δf(x, y, z) = α(x+ y + z) + α(x+ y) + α(x+ z) + α(y + z) + α(x) + α(y) + α(z).

(c) Linearity of f in 2nd variable:

f(x, y + y′) = f(x, y) + f(x, y′).

(d) Reconstruction of α from f :

f(x, x) = α(x).

1Recall that the Hamming weight of x is the number of components xi = 1.
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The existence of f follows from an explicit formula. We replace every monomial in α according
to the following rule:

(2.2)

xixjxk 7−→ xixjyk + xiyjxk + yixjxk,

xixj 7−→ xiyj ,

xi 7−→ xiyi.

where i < j < k, and obtain this way a function f in two arguments, satisfying properties (a)-(d).
In particular, the cubic form αO generates the following the twisting function:

fO(x, y) =
∑

1≤i<j<k≤n

(xixjyk + xiyjxk + yixjxk) +
∑

1≤i≤j≤n

xiyj .

The obtained twisted group algebras, denoted by On, generalize the classical algebra O of
octonions (which is isomorphic to O3).

Remark 2.1. One cannot choose a polynomial of degree ≥ 4, instead of a cubic function, in
order to construct a twisting function f satisfying properties (a)-(d). Indeed, let us apply the
differential δ to the equation in property (b). Since δ2 = 0, one obtains after a short computation:

0 = α(x+ y + z + t)

+α(x+ y + z) + α(x+ y + t) + α(x+ z + t) + α(y + z + t)

+α(x+ y)+α(x+ z)+α(x+ t)+α(y + z)+α(y + t)+α(z + t)

+α(x) + α(y) + α(z) + α(t).

This is exactly the condition that α is a polynomial of degree at most 3.

2.5. From algebra to square identities. Consider a twisted group algebra (R[Fn
2 ], f), its

elements are of the form
a =

∑
x∈Fn

2

ax ex,

with coefficients ax ∈ R. Define the Euclidean norm by

||a||2 :=
∑
x∈Fn

2

a2
x.

Consider two sets A,B ⊂ Fn
2 and the coordinate subspaces A and B ⊂ (R[Fn

2 ], f):{
a | a =

∑
x∈A

ax ex
}

and
{
b | b =

∑
y∈B

by ey
}
.

The condition

(2.3) ||a||2 ||b||2 = ||a b||2,

gives a square identity of size [|A|, |B|, |A+B|].
Consider the twisted group algebra (R[Fn

2 ], f) corresponding to a cubic function α as explained
in Section 2.4. It turns out that the condition (2.3) can be very easily expressed in terms of the
form α.

The following statement is proved in [16, 15, 17].
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Lemma 2.2. The condition (2.3) is equivalent to the following: for all x 6= x′ ∈ A and y 6= y′ ∈
B such that x+ x′ = y + y′, one has α(x+ x′) = 1.

We will apply the above lemma in the case α = αO, and choosing B = Fn
2 . The condition on

the set A then reads wt(x+ x′) is not a multiple of 4, for all distinct x, x′ ∈ A.

3. Construction of Hurwitzian sets

In this section, we construct examples of sets A ⊂ Fn
2 of cardinality |A| = ρ(2n) satisfying the

condition: wt(x + x′) is not a multiple of 4, for all distinct x, x′ ∈ A. Such sets were already
considered in [15] where they were called Hurwitzian sets. In particular, we discuss a relation
to the binary Hadamard matrices.

3.1. Cases n ≡ 1, 2 ( mod 4). In this case, ρ(2n) = 2n. The following choice of a Hurwitzian
set is perhaps the most obvious. Choose the following set:

A = {0, e1, e2, . . . , en, e1 + e2, e1 + e3, . . . , e1 + en} .
For all x, x′ ∈ A, the weight of the sum satisfies wt(x + x′) ≤ 3, and thus αO(x + x′) = 1,
provided x+ x′ 6= 0. Therefore A is a Hurwitzian set.

Note that the above choice is not unique. However, it is easy to see that the set A is the only
Hurwitzian set which is a “shift-minimal downset” according to the terminology of [8].

3.2. Case n ≡ 3 ( mod 4). In this case, ρ(2n) = 2n + 2 which is the most interesting situation
for many reasons.

Consider the element of maximal weight:

(3.1) ω = (1 1 . . . 1) = e1 + · · ·+ en.

One can choose the above set A, completed by ω and e1 + ω. Let us give a more symmetric
example.

Choose the set

A = {0, ω, e1, e2, . . . , en, e1 + ω, e2 + ω, . . . , en + ω} .
The weight of a non-zero element of the sumset A+ A can be one of the following four values:
1, 2, n− 1, or n− 2. Since this is never a multiple of 4, we conclude that A is a Hurwitzian set.
Moreover, it is not difficult to show that the above set is the only Hurwitzian set invariant with
respect to the group of permutations Sn.

3.3. Another choice in the case n ≡ 3 ( mod 8), relation to the Hadamard matrices.
The case n ≡ 3 ( mod 8) is a subcase of the above one. Remarkably, there is a choice of
Hurwitzian set based on the classical Hadamard matrices.

Recall that a Hadamard matrix is an m×m-matrix H with entries ±1, such that tHH = mI,
where tH is the transpose of H and I is the identity matrix. It is known that a Hadamard
matrix can exist only if m = 1, 2 or m = 4s; existence for arbitrary s is the classical Hadamard
conjecture.

The construction is as follows. We remove the first column of H and construct two (m−1)×m-
matrices, H1, H2 with entries 0, 1. The matrix H1 is obtained by replacing 1 by 0 and −1 by 1,
the matrix H2 is obtained by replacing −1 by 0.

Lemma 3.1. The rows of H1 and H2 form a Hurwitzian set in F4s−1
2 , provided s is odd.
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Proof. It follows from the definition of a Hadamard matrix that every sum of two distinct rows
of H1 is of weight 2s, and similarly for H2. The sum of a row of H1 with a row of H2 is of weight
2s− 1 or 4s− 1. �

Example 3.2. The (unique up to equivalence) 12× 12 Hadamard matrix H corresponds to the
following 12× 11 binary matrices:

H1 =



1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 0 0 1 0

0 0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 0

0 0 1 0 0 1 0 1 1 1 0

0 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 1 0 1

1 1 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 0 0 1 0 0


H2 =



0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1 1 0 1

1 1 0 1 0 0 0 1 1 1 0

0 1 1 0 1 0 0 0 1 1 1

1 0 1 1 0 1 0 0 0 1 1

1 1 0 1 1 0 1 0 0 0 1

1 1 1 0 1 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 0 1 1 0 1

1 0 0 0 1 1 1 0 1 1 0

0 1 0 0 0 1 1 1 0 1 1


(which are related to the extended Golay code). The rows of the matrices H1 and H2 constitute
a Hurwitzian set in F11

2 of cardinality 24.

An idea of further development is to understand the relations of Theorem 1 to doubly even
binary codes. Existence of such relations is indicated by the above example where the celebrated
Golay code appears explicitly.

3.4. Case n ≡ 0 ( mod 4). Recall that ρ(2n) = 2n + 1 in this case. However, we will show in
the next section that there are no Hurwitzian sets in the case. Moreover, we are convinced that
a similar situation holds for any cubic form.

Conjecture 1. Given a boolean cubic function α on Fn
2 with n ≡ 0 ( mod 4), there is no set A

such that α
∣∣
(A+A)\{0} ≡ 1 and |A| = 2n+ 1.

This conjecture is easily verified for n = 4, as well as for α = αO and arbitrary n.

4. Proof of Theorems 1 and 2

Let us prove Theorem 2. Fix an arbitrary cubic form α, and let A ⊂ Fn
2 be a set such that

α
∣∣

(A+A)\{0} ≡ 1.

Lemma 2.2 then implies ||a|| ||b|| = ||ab|| for all a ∈ A and arbitrary b. We therefore obtain a
square identity of size [|A|, 2n, 2n]. The Hurwitz-Radon Theorem implies that |A| ≤ ρ(2n). This
bound is sharp as follows from the constructions of Hurwitzian sets; see Section 3. Theorem 2
follows.

Fixing α = αO, we obtain the statement of Theorem 1 in the cases where n ≡ 1, 2, 3 ( mod 4).
In the last case n = 4m, Theorem 2 implies that |A| ≤ 2n+1. It remains to show that if n = 4m,
then |A| ≤ 2n.

Suppose that n = 4m and A is a Hurwitzian set. Every element x ∈ A can be replaced by
x̃ = x+ ω, where ω is the “longest” element (3.1). Indeed, one has

x+ x′ = x+ x′ + ω.
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Replacing x by x̃ whenever xn = 1, we obtain another Hurwitzian set, Ã, such that xn = 0 for
all x ∈ Ã. But then |Ã| ≤ ρ(2n−1) = 2n.

Theorem 1 is proved.

Remark 4.1. Note that the Oddtown Theorem easily implies the upper bound |F| ≤ 2n+2 for
every n. Indeed, let F0 ⊂ F be the family of subsets of even cardinality, without loss of generality
we assume that F0 contains the empty set. It follows from the assumption of Theorem 1, that
for every F (6= ∅) ∈ F0, one has |F | ≡ 2 (mod 4), and for every two elements, |F ∩ F ′| ≡ 1 (
mod 2). The Oddtown Theorem then implies |F0| ≤ n+ 1. Similarly, |F1| ≤ n+ 1, where F1 is
the odd subfamily of F .

5. Additive quadruples

Our next statement concerns so-called additive quadruples. If A,B ⊂ Fn
2 , four elements

x, x′ ∈ A, y, y′ ∈ B form an additive quadruple (x, x′, y, y′) if

x+ x′ + y + y′ = 0.

We call an additive quadruple proper if x 6= x′ and y 6= y′.

Theorem 3. Let A,B ⊂ Fn
2 with |A| ≤ |B|. If every proper additive quadruple (x, x′, y, y′)

satisfies α(x+ x′) = 1, then |A+B| ≥ Ω(|A|
6
5 ).

Proof. Fix, as above, an arbitrary cubic form α. Suppose that A and B are two subsets of same
cardinality |A| = |B| = r, and such that for all proper additive quadruples (x, x′, y, y′) one has
α(x + x′) = α(y + y′) = 1. One obtains an identity of size [r, r,N ], where N = |A + B|. The
Hurwitz problem is still open in this particular case and even an asymptotic of the least value
Nmin as a function of r is not known exactly. However, it is known that asymptotically

C1 r
6
5 ≤ Nmin(r) ≤ C2

r2

log(r)
.

where C1 and C2 are some constants. The upper bound follows easily from the Hurwitz-Radon
theorem, and the lower bound was recently obtained in [11], which is precisely the statement of
Theorem 3. �

The Balog-Szemerédi-Gowers theorem [3, 9], in the Fn
2 case (see [7]) states, roughly speak-

ing, that the sumset A + B grows slowly, provided there are “many” additive quadruples (of
order |A|3). The above result is a sort of converse statement.
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