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Abstract. This article is the writing notes of a talk on Lie Antialgebras given by the

second author at the conference 3Quantum: Algebra Geometry Information that held in

Tallinn in July 2012. The aim of this note is to give a brief survey of the existing theory
of Lie antialgebras and to suggest open questions.

1. Introduction

The notion of Lie antialgebra is quite recent and due to Valentin Ovsienko. Since the
founding work [14], various directions of study on these algebras have been, and are still,
investigated [13], [10], [11], [9], [5].

The aim of this note is to give a brief survey of the existing theory and to suggest open
questions.

What is a Lie antialgebra? The name is quite surprising as Lie antialgebras are neither Lie
algebras nor antialgebras. The name was chosen to suggest a “dark face” of Lie algebras, a
twin brother living in the shadow. The prefix anti also refers to parity inversion and changes
of signs occuring in this theory in comparison to the theory of Lie algebras.

Ovsienko likes to illustrate the general idea behind Lie antialgebras with the following
diagram.
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a1 = g1

a0 g0

algebras
Comm.

algebras

The left part consists of the class of commutative associative algebras, and the right one
of the class of Lie algebras. These two classes are known to be Koszul dual. The idea is to
relate the two classes in a concrete way, using Z2-graded structures. A commutative algebra
a0 is considered as the even part of a Z2-commutative superalgebra a = a0 ⊕ a1, and a Lie
algebra g0 as the even part of a Lie superalgebra g = g0⊕ g1, each of these even parts being
generated by a common odd part a1 = g1.
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2. Origin and first examples

2.1. A new invariant bivector fields. The origin of Lie antialgebras comes from the
following observation. Consider the supervariety M = R2,1, on which the even coordinates
are denoted p, q, and the odd coordinate is τ . The standard symplectic form on M is

ω = dp ∧ dq +
1

2
dτ ∧ dτ.

The form ω is preserved by the action of the Lie superalgebra osp(1, 2).
A natural question is what are the invariant bivectors fields with respect to the action of

osp(1, 2) ?
One can immediately exhibit the following invariant bivector, which is the inverse of ω,

P =
∂

∂p
∧ ∂

∂q
+

1

2

∂

∂τ
∧ ∂

∂τ
.

It turns out that there is another invariant bivector, given by

Λ =
∂

∂τ
∧ E + τ

∂

∂p
∧ ∂

∂q
,

where E = p ∂
∂p + q ∂∂q + τ ∂

∂τ is the Euler field.

It seems that the existence of this extra invariant bivector Λ had not been observed before
Ovsienko’s work. In addition, Ovsienko showed that there are no other invariant bivectors
beside of P and Λ and their linear combinations.

What are the properties of Λ? One notes that the bivector Λ is odd with linear coefficients
whereas P is even with constant coefficients. Let us briefly compare the properties of Λ and
that of P.

2.2. Algebraic structures associated to the bivectors P and Λ. The first thing one
can do is to look at algebraic stuctures associated to these two bivectors. More precisely,
given two homogeneous functions F,G ∈ C∞(M), one can construct natural products using
the duality between bivectors and 2-forms.

{F,G} := 〈 P, dF ∧ dG 〉 −→ Lie (Poisson) superalgebra

]F,G[ := −(−1)|F |

2 〈 Λ , dF ∧ dG 〉 −→ ??

The bracket { , } associated to the even bivector P gives a structure of Lie superalgebra
on C∞(M). What about the bracket ] , [ associated to Λ ? The sign (−1)|F |, where |F |
stands for the parity of F , appearing in the definition, is added to make the operation ]F,G[
supercommutative (the coefficient of − 1

2 is just a normalization and is not essential). It is
not easy to exhibit general properties of this bracket on the entire space of functions.

2.3. Examples. Let us restrict our attention to nice subspaces of C∞(M). For instance,
the space of quadratic polynomials is stable under the Lie bracket {, } and forms a Lie
superalgebra isomorphic to osp(1, 2). Similarly, the space of linear functions is stable for
the odd bracket ], [, and forms (after parity inversion) a 3-dimensional algebra which is also
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well known: it is isomorphic to the tiny Kaplansky algebra K3. Recall that K3 has one even
basis vector, say ε, and two odds, say a, b, subject to the following multiplication rules:

εε = ε, εa = 1
2a, εb = 1

2b, ab = 1
2ε

(these relations may be obtained in naming ε, a, b the images of τ, q, p after parity inversion).

More generally, the space of homogeneous functions of degree 2 (here the homogeneity is
defined with respect to the Euler field, i.e. E(F ) = 2F ) is stable under { , }. The subspace
of rational functions with poles allowed only at points where p = 0 or q = 0, forms a Lie
superalgebra isomorphic to the superconformal algebra K(1), also known as Neveu-Schwartz
or super Virasoro algebra (see [14] for details). The parallel situation for the bracket ] , [,
is to consider the stable subspace of homogeneous rational functions of degree 1. It forms
an infinite-dimensional algebra denoted AK(1) and that can be described as follows: the
even basis vectors εn, n ∈ Z, and the odd basis vectors ai, i ∈ Z + 1

2 , are subject to the
multiplication rules

εnεm = εn+m, εnai = 1
2an+i, aiaj = 1

2 (i− j)εi+j ,

(these relations maybe obtained in naming εn and ai the images of τ( qp )n and p( qp )i+
1
2 , after

parity reversion).

The situation can be summarized as follows.

{quadratic polynomials} = < p2, pq, q2, pτ, qτ >
{,}−→ osp(1, 2)

{linear polynomials} = < p, q, τ >
],[−→ K3

{rat. functions of deg 2} =< p2( qp )n+1, τp( qp )i+
1
2 , n ∈ Z, i ∈ Z + 1

2 >
{,}−→ K(1)

{rat. functions of deg 1} =< p( qp )i+
1
2 , τ( qp )n, n ∈ Z, i ∈ Z + 1

2 >
],[−→ AK(1)

The algebras K3 and AK(1) are both known as Jordan superalgebras.

Question 1. What are the general properties of ] , [ ? Can one construct other nice al-
gebras out of this bracket? Do invariant odd bivector fields analogous to Λ exist in higher
dimension?

3. General theory

3.1. Axioms. The above examples are quite encouraging to try to build out of them a
general theory.

Definition. [14] A Lie antialgebra a = a0 ⊕ a1 is a supercommutative algebra satisfying

(i) a0 is associative,
(ii) right multiplications Ry : a→ a, a 7→ ay are odd derivations for y ∈ a1,
(iii) a0 acts commutatively on a1, i.e.

x1(x2y) = x2(x1y) for x1, x2 ∈ a0, y ∈ a1.
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Remarks on the axioms:

• a1 is not a a0-module, because of the axiom (ii), the axiom (iii) is equivalent to

(iii’) x1(x2y) =
1

2
(x1x2)y, for x1, x2 ∈ a0, y ∈ a1,

at a first sight this half-action may appear unnatural but it is actually essential to
the theory,

• the defining identities of Lie antialgebras are all cubic,
• half-unital superalgebras satisfying (i) and (iii’) are called Kaplansky algebras in

[12], referring to constructions of I. Kaplansky [4],
• the axioms (i) and (ii) imply that a is a Jordan superalgebra, (it is quite involved to

go from these cubic identities to the quartic identites of Jordan superalgebra, one
has to find the right sequence of transformations; this was done in details in [12]
using the weaker requirement that a0 is Jordan),

• if a is generated by its odd part, then axioms (ii) and (iii) imply the axiom (i) (this
was observed in [10]; axiom (iii) plays a crucial role in this property).

Lie antialgebras can be understood as a non trivial super analog to commutative associa-
tive algebras.

Example. The algebras K3 and AK(1) are Lie antialgebras. But, the entire space C∞(M)
equipped with the bracket ] , [ is not.

3.2. Adjoint Lie superalgebra. A nice feature of the theory of Lie antialgebras is a
relationship to the theory of Lie superalgebras. The axiomatic definition of Lie antialgebra
allows one to construct a formal Lie superalgebra sharing the same odd space.

To any Lie antialgebra a = a0 ⊕ a1 associate the Lie superalgebra g(a) = g0 ⊕ g1, where,
as vector spaces, g1 = a1 and g0 = S2

a0
a1 is the space of symmetric tensors of elements of

a1 over a0. In other words, elements of g0 are of the forms y1 � y2, where y1, y2 ∈ a1 and �
is the symmetric tensor product over a0, so that{

y1 � y2 = y2 � y1,
y1x� y2 = y1 � y2x, y1, y2 ∈ a1, x ∈ a0.

Now, define a bracket on g(a) as follows

(3.1)

[y1, y2] = y1 � y2,

[y1 � y2, y3] = −[y3, y1 � y2] = y1(y2y3) + y2(y1y3),

[y1 � y2, y3 � y4] = [y1 � y2, y3]� y4 + [y1 � y2, y4]� y3,

where y1, y2, y3 and y4 are elements of g1 = a1.
The above bracket is the most natural skew-symmetric bracket one may think of. It was

announced to be a Lie superbracket in [14] and then the proof was completed in [10]. It is
quite amazing how the axioms of Lie antialgebras combine to produce the Lie superalgebra
structure. Once again here the axiom (iii) plays a crucial role. To convince the reader, we
suggest as an exercice to show that the bracket on g(a) is well defined, i.e. to show that
[y1 � y2x, y3] = [y1x� y2, y3].

Remark. Let us stress that the above construction is different from the well known Tits-
Kantor-Koecher (TKK) construction. The adjoint Lie superalgebras associated to K3 and
AK(1) are

g(K3) = osp(1, 2), g(AK(1)) = K(1).
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In these examples, the adjoint algebras coincide with the algebra of derivations. But, in
general this is not true. One has only an embedding

g(a) ↪→ Der(a).

The following problems remain open.

Question 2. Is there a natural construction of a Lie antialgebra from a Lie superalgebra?
Is there a direct link between the constructed adjoint Lie superalgebra g(a) and the one
obtained through the TKK process?

Question 3. The relation osp(1, 2) = Der(K3) is crucial in the construction of [2]. Can we
expect similar construction from K(1) = Der(AK(1)), or more generally from a and g(a)?

3.3. Representation theory. Lie antialgebras are connected to three large classes of al-
gebras: commutative associative, Jordan, and Lie. As a particular class of Jordan algebras,
one may apply the classical representation theory of Jordan algebras to Lie antialgebras,
but it seems important to adapt a little bit the classical definitions to take into account the
specificity of Lie antialgebras.

Definition. [14],[10] A linear map % : a → End(V ), where V is a Z2-graded space, is a
representation of Lie antialgebra if

(1) %(ab) = [%(a) , %(b)]+, for all a, b ∈ a,and
(2) %(x1x2) = %(x1)%(x2), for all x1, x2 ∈ a0.

The notation [ , ]+ stands for the usual Jordan superbracket constructed out of an asso-
ciative superalgebra, i.e. on homogeneous elements

[X,Y ]+ =
1

2
(XY + (−1)|X||Y |Y X),

whereas the ususal commutator will be denoted [ , ]

[X,Y ] = XY − (−1)|X||Y |Y X.

In other words, a representation of Lie antialgebra is a Jordan representation with the extra
requirement that the restriction to the even part is a morphism of associative algebra.

A nice feature of the theory is the following relationship between representations of a and
those of g(a).

Theorem. [10] Consider a Lie antialgebra a and its adjoint Lie superalgebra g(a).

(1) Every representation % : a → End(V ) induces a unique representation %̃ : g(a) →
End(V ) such that %̃(g1) = %(a1).

(2) There exists an ideal Ia in the universal enveloping algebra U(g(a)) such that every
representation %̃ : g(a) → End(V ) vanishing on Ia induces a unique representation
% : a→ End(V ) with %̃(g1) = %(a1).

In other words, point (1) of the above theorem says that the images of odd elements of a
generate in (End(V ), [ , ]) a representation of g(a). This is quite surprising.
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Consider for example an arbitrary representation of K3, and denote by A,B, E the images
of a, b, ε. The following relations hold

AB −BA = E
AE + EA = A

BE + EB = B

E2 = E .

Now, denote by H := −(AB + BA), E = A2 and F := −B2. These three elements
automatically satisfy the relations of sl(2), i.e.

HE − EH = 2E

HF − FH = −2F

EF − FE = H,

and together with A,B they satisfy the relations of osp(1, 2).
The converse is not true. The point (2) of the above theorem characterizes the represen-

tations of the Lie superalgebra for which the converse holds. In the case of a = K3, the ideal
Ia of U(osp(1, 2)) is the ideal generated by the Casimir element.

More details on the representation of K3 viewed as a Lie antialgebra can be found in [13].
Elements of general representation theory for Lie antialgebras are developed in [10].

Question 4. In [10] the notion of universal enveloping algebra for a Lie antialgebra is
studied and it is observed that U(K3) appears in a form similar to the generalized Weyl
algebras (2.1) in [1]. Are there more relations between Lie antialgebras and generalized Weyl
algebras?

4. More examples coming from geometry

In this last section, we describe a series of Lie antialgebras closely related to the Lie
algebras of Krichever-Novikov. This series generalized AK(1) in the same way as Krichever-
Novikov algebras generalize the Witt algebra.

Consider a Riemann surface Σ of genus g with a setM of N marked points. The marked
points are the points where poles of meromorphic functions on Σ are allowed.

Denote by Fλ the family of modules of meromorphic tensor densities of weight λ. In
order to well define these modules for any complex parameter λ, one should fix a complex
logarithm on Σ. In what follows we will only consider the cases where λ is integer or half
integer.

The space F0 is well identified, it is simply the set of meromorphic functions on Σ,
holomorphic outside of M. The space F−1 is also well identified, it is the Lie algebra of
meromorphic vector fields on Σ holomorphic outside of M.

In the case of genus g = 0 and N = 2 marked points, the Lie algebra F−1 is the famous
Witt algebra. In higher genus g ≥ 0 and N = 2 marked points, the Lie algebras F−1 are
known as Krichever-Novikov algebras, see [6], [7], [8]. The general case, g ≥ 0 and N ≥ 2,
has been extensively studied by Schlichenmaier, [15], [16], [17], see also [3].

One has natural actions of F−1 on itself (by commutator) and on F0 (by derivation).
These actions can be unified and naturally deformed in a one-parameter family of actions,
giving rise to the modules Fλ. Using local coordinates, the actions of F−1 can be described
as follows:
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F−1 ×Fλ −→ Fλ(
f(z)dz−1, g(z)dzλ

)
7→

(
f(z)g′(z) + λf ′(z)g(z)

)
dzλ.

This operation can be generalized in a skew-symmetric operation between two density mod-
ules

{ , } : Fµ ×Fλ −→ Fλ+µ+1(
f(z)dzµ, g(z)dzλ

)
7→

(
− µf(z)g′(z) + λf ′(z)g(z)

)
dzλ+µ+1.

Together, with the natural multiplication of two tensor densities

• : Fµ ×Fλ −→ Fλ+µ(
f(z)dzµ, g(z)dzλ

)
7→ f(z)g(z)dzλ+µ

they provide a natural structure of Poisson algebra on the graded space of all tensor densities⊕
λ Fλ.

Theorem. [11] The Z2-graded space F0⊕F− 1
2

has a natural structure of a Lie antialgebra,

given by the product

f(z) ◦ g(z) = f(z) • g(z)

f(z) ◦ γ(z)(dz)−
1
2 = 1

2 f(z) • γ(z)(dz)−
1
2

ϕ(z)(dz)−
1
2 ◦ γ(z)(dz)−

1
2 =

{
ϕ(z)(dz)−

1
2 , γ(z)(dz)−

1
2

}
.

Its adjoint Lie superalgebra is the space F−1 ⊕F− 1
2
, equipped with the bracket

[
f(z)(dz)−1 , g(z)(dz)−1

]
=

{
f(z)(dz)−1, g(z)(dz)−1

}
[
f(z)(dz)−1 , γ(z)(dz)−

1
2

]
=

{
f(z)(dz)−1, γ(z)(dz)−

1
2

}
[
ϕ(z)(dz)−

1
2 , γ(z)(dz)−

1
2

]
= 1

2 ϕ(z)(dz)−
1
2 • γ(z)(dz)−

1
2 .

In the case g = 0, N = 2, the Lie antialgebra is nothing but AK(1). In the case
g = 0, N = 3, the Lie antialgebra is closely related to a Jordan superalgebra algebraically
constructed in [18] to provide a “new type” of Jordan superalgebra. Let us also mention
computations of cocycles on the Lie antialgebras and Lie superalgebras of Krichever-Novikov
type [5].

This construction gives a concrete realization of our initial picture!
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Question 5. Krichever-Novikov algebras carry a structure of almost-graded algebras, see
[16]. How Lie antialgebras behave with respect to this almost-grading?

5. Conclusion

Lie antialgebras are friendly hybrid birds, suggesting a non-trivial super analog to com-
mutative associative algebras, and offering more relations between the theory of Jordan
algebras and Lie algebras. Many directions of the theory need to be explored. Questions 1-5
addressed throughout the paper are examples of precise questions naturally arising in the
theory. More general open questions, as the use of Lie antialgebras in mathematical physics
or link to integrable systems, are natural directions of investigations.
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