International Mathematics Research Notices Advance Access published February 7, 2009

Morier-Genoud, S. (2009) "Representations of asl₂," International Mathematics Research Notices, Article ID rnp003, 22 pages. doi:10.1093/imrn/rnp003

Representations of asl₂

Sophie Morier-Genoud

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Correspondence to be sent to: sophiemg@umich.edu

We study representations of the algebra asl_2 introduced in [5]. We show that representations of asl_2 form a subclass of representations of the Lie superalgebra osp(1|2) characterized by the property C = 0, where C is the Casimir element of the universal enveloping algebra $\mathcal{U}(osp(1|2))$. We deduce that asl_2 has no nontrivial finite-dimensional representations and classify infinite-dimensional weighted (Harish-Chandra) representations. It turns out that asl_2 has exactly one highest (and one lowest) weight representation.

1 Introduction and Main Results

Lie antialgebras form a new class of algebras introduced by V. Ovsienko [5]. These algebras appear naturally in the context of symplectic and contact geometry of \mathbb{Z}_2 -graded spaces, but their algebraic properties are not yet well understood. They exhibit a surprising mixture of the properties of commutative algebras and Lie algebras.

One of the first example of Ovsienko's algebras is the simple Lie antialgebra $asl_2(\mathbb{K})$, where $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . This algebra is of dimension 3 and has linear basis $\{\varepsilon; a, b\}$ subject to the following relations:

$$\varepsilon \cdot \varepsilon = \varepsilon,$$

$$\varepsilon \cdot a = a \cdot \varepsilon = \frac{1}{2}a, \quad \varepsilon \cdot b = b \cdot \varepsilon = \frac{1}{2}b,$$

$$a \cdot b = -b \cdot a = \frac{1}{2}\varepsilon, \quad a \cdot a = b \cdot b = 0.$$
(1.1)

Received August 12, 2008; Revised December 30, 2008; Accepted January 05, 2009 Communicated by Prof. Yuri Manin

© The Author 2009. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.

Representations of a Lie antialgebras were also defined in [5], where the problem of classification of representations of simple Lie antialgebras was formulated. In this article, we study representations of $asl_2(\mathbb{K})$.

Any representation of asl_2 is given by three operators: \mathcal{E} , A, and B, satisfying

$$AB - BA = \mathcal{E},$$

$$A\mathcal{E} + \mathcal{E}A = A,$$

$$B\mathcal{E} + \mathcal{E}B = B,$$

$$\mathcal{E}^{2} = \mathcal{E}.$$
(1.2)

These relations are very similar to the canonical Heisenberg relations AB - BA = Id, but they are different. In particular, the operator \mathcal{E} is not the identity. We will prove the following.

Proposition 1.1. Any irreducible representation of the relations (1.2) is equivalent to a representation $V = V_0 \oplus V_1$ such that

$$\mathcal{E}|_{V_0} = 0, \quad \mathcal{E}|_{V_1} = \mathrm{Id}.$$

This provides a natural \mathbb{Z}_2 -grading in which the operators A and B are odd. We then obtain a result similar to the classical result for the Heisenberg algebra.

Theorem 1. The Lie antialgebra $asl_2(\mathbb{K})$ has no nontrivial finite-dimensional representations.

We introduce and classify infinite-dimensional representations of $asl_2(\mathbb{K})$, which we call *weighted representations*. We construct a family of weighted representations $V(\ell)$, for $\ell \in \mathbb{K}$ (see Section 4.2). Considering the set of parameters $\mathcal{P} = [-1, 1]$ in the real case, or $\mathcal{P} = [-1, 1] \cup \{\ell \in \mathbb{C} \mid -1 \leq \text{Re}(\ell) < 1\}$ in the complex case, we obtain the complete classification of irreducible weighted representations.

Theorem 2. Any irreducible weighted representation is isomorphic to $V(\ell)$ for a unique $\ell \in \mathcal{P}$.

In particular, we obtain the following statement.

Corollary 1.2. The algebra asl_2 has exactly one nontrivial highest weight representation and exactly one nontrivial lowest weight representation.

Indeed, the highest and lowest weight representations are the representations V(-1) and V(1), respectively.

The Lie antialgebra $asl_2(\mathbb{K})$ is closely related to the simple classical Lie superalgebra osp(1|2). One has

$$osp(1|2) = Der(asl_2(\mathbb{K})).$$

It was shown in [5] that every representation of $asl_2(\mathbb{K})$ is naturally a representation of osp(1|2). The first result of this article determines the class of osp(1|2)-representations corresponding to $asl_2(\mathbb{K})$ -representations.

Theorem 3. There is a one-to-one correspondence between representations of $asl_2(\mathbb{K})$ and representations of osp(1|2) satisfying one of the following equivalent conditions:

$$C = 0, \tag{1.3}$$

where *C* is the Casimir element of $\mathcal{U}(osp(1|2))$;

$$\Gamma^2 = \frac{1}{4} \operatorname{Id},\tag{1.4}$$

 \square

where Γ is the ghost Casimir element.

Recall that the ghost Casimir element of $\mathcal{U}(osp(1|2))$ is an invariant of so-called *twisted adjoint action* (see [1, 2, 4, 6]).

Let us mention that [3] contains a classification of the irreducible Harish-Chandra modules of osp(1|2). This classification will be relevant for this article (cf. Section 4.8) as application of Theorem 3.

We also define the notion of the universal enveloping algebra $\mathcal{U}(\mathfrak{a})$ associated to an arbitrary Lie antialgebra. We describe explicitly the algebra $\mathcal{U}(asl_2(\mathbb{K}))$ and relate it to a quotient of $\mathcal{U}(osp(1|2))$. A more general treatment of enveloping algebras of Lie antialgebras will be given in a subsequent article.

This article is organized as follows. In Section 2, we recall the general definitions of Lie antialgebras and their representations. In Section 3, we obtain preliminary results

4 S. Morier-Genoud

on representations of $\operatorname{asl}_2(\mathbb{K})$ and define the universal enveloping algebra $\mathcal{U}(\operatorname{asl}_2(\mathbb{K}))$; a link with the Lie algebra $\operatorname{osp}(1|2)$ and its (ghost) Casimir elements is established. We complete the proof of Theorem 3 in Section 3.4. In Section 4, we introduce the notion of weighted representations and construct the family of irreducible weighted representations $V(\ell), \ell \in$ \mathbb{K} ; we study the representations $V(\ell)$ and complete the proofs of Theorem 1 and Corollary 1.2. At the end of the article, we discuss some general aspects of the representation theory of $\operatorname{asl}_2(\mathbb{K})$, such as the tensor product of two representations.

2 Lie Antialgebras and Their Representations

Let us give a definition of a Lie antialgebra equivalent to the original definition given in [5]. Throughout this article the ground vector field is $\mathbb{K} = \mathbb{R}$ or \mathbb{C} .

Definition 2.1. A Lie antialgebra is a \mathbb{Z}_2 -graded vector space $\mathfrak{a} = \mathfrak{a}_0 \oplus \mathfrak{a}_1$, equipped with a bilinear product satisfying the following conditions:

- (1) it is even: $a_i \cdot a_j \subset a_{i+j}$;
- (2) it is supercommutative, i.e. for all homogeneous elements $x, y \in a$,

$$x \cdot y = (-1)^{p(x)p(y)} y \cdot x,$$

where *p* is the parity function defined by p(x) = i for $x \in a_i$;

- (3) the subspace a_0 is a commutative associative algebra;
- (4) for all $x_1, x_2 \in \mathfrak{a}_0$ and $y \in \mathfrak{a}_1$, one has

$$x_1 \cdot (x_2 \cdot y) = \frac{1}{2}(x_1 \cdot x_2) \cdot y,$$

in other words, the subspace \mathfrak{a}_1 is a module over \mathfrak{a}_0 , the homomorphism $\varrho : \mathfrak{a}_0 \to \operatorname{End}(\mathfrak{a}_1)$ being given by $\varrho_x y = 2 x \cdot y$ for all $x \in \mathfrak{a}_0$ and $y \in \mathfrak{a}_1$;

(5) for all $x \in \mathfrak{a}_0$ and $y_1, y_2 \in \mathfrak{a}_1$, the Leibniz identity

$$x \cdot (y_1 \cdot y_2) = (x \cdot y_1) \cdot y_2 + y_1 \cdot (x \cdot y_2)$$

is satisfied;

(6) for all $y_1, y_2, y_3 \in \mathfrak{a}_1$, the Jacobi-type identity

$$y_1 \cdot (y_2 \cdot y_3) + y_2 \cdot (y_3 \cdot y_1) + y_3 \cdot (y_1 \cdot y_2) = 0$$

is satisfied.

Example 2.2. It is easy to see that the above axioms are satisfied for $asl_2(\mathbb{K})$. In this case, the element ε spans the even part, $asl_2(\mathbb{K})_0$, while the elements a, b span the odd part, $asl_2(\mathbb{K})_1$.

Given a \mathbb{Z}_2 -graded vector space $V = V_0 \oplus V_1$, the space End(V) of linear endomorphisms of V is a \mathbb{Z}_2 -graded associative algebra:

 $\operatorname{End}(V)_0 = \operatorname{End}(V_0) \oplus \operatorname{End}(V_1), \quad \operatorname{End}(V)_1 = \operatorname{Hom}(V_0, V_1) \oplus \operatorname{Hom}(V_1, V_0).$

Following [5], we define the following "anticommutator" on End(*V*):

$$]X, Y[:= X Y + (-1)^{p(X)p(Y)} Y X,$$
(2.5)

where p is the parity function on End(V) and $X, Y \in \text{End}(V)$ are homogeneous (purely even or purely odd) elements. Note that the sign rule in (2.5) is opposite to that of the usual commutator:

$$[X, Y] = X Y - (-1)^{p(X)p(Y)} Y X.$$
(2.6)

Remark 2.3. Let us stress that the operation (2.5) does *not* define a Lie antialgebra structure on the full space End(V); it is not known for which subspaces of End(V) this is the case. This operation provides, however, a definition of the notion of representation of a Lie antialgebra.

Definition 2.4. (a) A representation of a Lie antialgebra \mathfrak{a} is a pair (V, χ) where $V = V_0 \oplus V_1$ is a \mathbb{Z}_2 -graded vector space and $\chi : \mathfrak{a} \to \operatorname{End}(V)$ is an even linear map such that

$$]\chi_{x},\chi_{y}[=\chi_{x\cdot y}$$
(2.7)

for all $x, y \in \mathfrak{a}$.

(b) A subrepresentation is a \mathbb{Z}_2 -graded subspace $V' \subset V$ stable under χ_x for all $x \in \mathfrak{a}$.

(c) A representation is called *irreducible* if it does not have proper subrepresentations.

(d) Two representations (V, χ) and (V', χ') are called *equivalent* if there exists a linear isomorphism $\Phi: V \to V'$ such that $\Phi \circ \chi_x = \chi'_x \circ \Phi$, for every $x \in \mathfrak{a}$.

6 S. Morier-Genoud

Remark 2.5. There is a notion of a module over a Lie antialgebra, which is different from that of a representation. For instance, the "adjoint action" defined as usual by $ad_x y = x \cdot y$ is *not* a representation, but it does define an a-module structure on a.

Given a Lie antialgebra \mathfrak{a} , it was shown in [5] that there exists a Lie superalgebra, $\mathfrak{g}_{\mathfrak{a}}$, canonically associated to \mathfrak{a} . Every representation of \mathfrak{a} extends to a representation of $\mathfrak{g}_{\mathfrak{a}}$. In the case of $\mathfrak{asl}_2(\mathbb{K})$, the corresponding Lie superalgebra is the classical simple Lie antialgebra $\mathfrak{osp}(1|2)$. We will give the explicit construction of this Lie superalgebra in the next section and use it as the main tool for our study.

3 Representations of $asl_2(\mathbb{K})$ and the (Ghost) Casimir of osp(1|2)

In this section we provide general information about the representations of $asl_2(\mathbb{K})$, and prove Proposition 1.1. We also introduce the action of osp(1|2) and prove Theorem 3.

3.1 Generators of $asl_2(\mathbb{K})$ and the \mathbb{Z}_2 -grading

Consider an $asl_2(\mathbb{K})$ -representation $V = V_0 \oplus V_1$ with $\chi : asl_2(\mathbb{K}) \to End(V)$. The homomorphism condition (2.7) can be written explicitly in terms of the basis elements:

$$\begin{cases} \chi_a \chi_b - \chi_b \chi_a = \frac{1}{2} \chi_\varepsilon \\ \chi_a \chi_\varepsilon + \chi_\varepsilon \chi_a = \frac{1}{2} \chi_a \\ \chi_b \chi_\varepsilon + \chi_\varepsilon \chi_b = \frac{1}{2} \chi_b \\ \chi_\varepsilon \chi_\varepsilon = \frac{1}{2} \chi_\varepsilon. \end{cases}$$

Let us simplify the notation by fixing the following elements of End(V):

$$A = 2 \chi_a$$
, $B = 2 \chi_b$, $\mathcal{E} = 2 \chi_{\varepsilon}$.

The above relations are then equivalent to (1.2).

The element \mathcal{E} is a projector in V. This leads to a decomposition of V into eigenspaces $V = V^{(0)} \oplus V^{(1)}$ defined by

$$V^{(\lambda)} = \{ v \in V \mid \mathcal{E}v = \lambda v \}, \quad \lambda = 0, 1.$$

This decomposition is not necessarily the same as the initial one, $V = V_0 \oplus V_1$. Since V_i , where i = 0, 1, is stable under the action of \mathcal{E} , we obtain a refinement

$$V = V_0^{(0)} \oplus V_0^{(1)} \oplus V_1^{(0)} \oplus V_1^{(1)}$$
 ,

where

$$V_i^{(\lambda)} = \{ v \in V_i \mid \mathcal{E}v = \lambda v \}, \quad \lambda = 0, 1, \quad i = 0, 1.$$

We are now ready to prove Proposition 1.1. Using the relations (1.2) it is easy to see that A and B send the spaces $V_i^{(\lambda)}$ into $V_{1-i}^{(1-\lambda)}$, where $\lambda = 0, 1, i = 0, 1$. Thus, changing the \mathbb{Z}_2 -grading of V to $V' = V'_0 \oplus V'_1$, where

$$egin{aligned} V_0' &= V_0^{(0)} \oplus V_1^{(0)}, \ V_1' &= V_0^{(1)} \oplus V_1^{(1)} \end{aligned}$$

does not change the parity of the operators A, B, and \mathcal{E} viewed as elements of the Z_2 graded space $\operatorname{End}(V')$. In other words, the map $\chi' : \mathfrak{a} \to \operatorname{End}(V')$ defined by $\chi'_x = \chi_x$ for all $x \in \mathfrak{a}$, is still an even map satisfying the condition 2.7. Consequently, (V', χ') is also a representation. It is then clear that (V', χ') is equivalent (in the sense of Definition 2.4 (d)) to (V, χ) .

Proposition 1.1 is proved.

3.2 The action of osp(1|2)

The construction of this section is a special case of the general construction of [5], where, however, some proofs are missing (cf. Proposition 4.7). For the sake of completeness, we give here the complete proofs.

Given an $\mathrm{asl}_2(\mathbb{K})\text{-representation}$ with generators A,B, we define operators E,F, and H by

$$E := A^2, \quad F := -B^2, \quad H := -(AB + BA).$$
 (3.8)

Lemma 3.1. Given an $asl_2(\mathbb{K})$ -representation, the operators A, B and E, F, H span an action of the Lie superalgebra osp(1|2).

Proof. Recall that the Lie superalgebra osp(1|2) contains three even generators *E*, *F*, *H* and two odd generators *A*, *B* satisfying the relations:

$$[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H,$$

$$[H, A] = A, \quad [E, A] = 0, \quad [F, A] = B,$$

$$[H, B] = -B, \quad [E, B] = A, \quad [F, B] = 0,$$

$$[A, B] = -H, \quad [A, A] = 2E, \quad [B, B] = -2F.$$
(3.9)

These identities can be obtained by straightforward computations. For instance,

$$[H, E] = -(AB + BA)A^{2} + A^{2}(AB + BA)$$

$$= -ABA^{2} - BA^{3} + A^{3}B + A^{2}BA$$

$$= 2A(AB - BA)A + (AB - BA)A^{2} + A^{2}(AB - BA)$$

$$= 2A\mathcal{E}A + \mathcal{E}A^{2} + A^{2}\mathcal{E}$$

$$= (A\mathcal{E} + \mathcal{E}A)A + A(\mathcal{E}A + A\mathcal{E})$$

$$= A^{2} + A^{2}$$

$$= 2E.$$

In the same way, one obtains [E, F] = H, etc.

With similar computations, one can establish the following additional relations:

$$[H, \mathcal{E}] = 0, \quad [E, \mathcal{E}] = 0, \quad [F, \mathcal{E}] = 0, \tag{3.10}$$

which will also be useful.

3.3 The universal enveloping algebra

Given a Lie antialgebra $\mathfrak{a} = \mathfrak{a}_0 \oplus \mathfrak{a}_1$, we define an associative \mathbb{Z}_2 -graded algebra $\mathcal{U}(\mathfrak{a})$, which plays the role of *universal enveloping algebra* of \mathfrak{a} . Consider the tensor algebra

$$T(\mathfrak{a}) := \bigoplus_{n \ge 0} \mathfrak{a}^{\otimes n}$$

together with the natural \mathbb{Z}_2 -grading. Denote by \mathcal{R} the two-sided ideal of $T(\mathfrak{a})$ generated by

$$\{x \otimes y + (-1)^{p(x)p(y)}y \otimes x - xy, \quad x, y \in \mathfrak{a}_0 \cup \mathfrak{a}_1\}$$
$$\bigcup \{x \otimes y - y \otimes x, \quad x, y \in \mathfrak{a}_0\}.$$

We define

$$\mathcal{U}(\mathfrak{a}) := T(\mathfrak{a})/\mathcal{R}$$

We believe this definition is natural since the properties of the algebra $\mathcal{U}(\mathfrak{a})$ are similar to the properties of the universal enveloping algebras associated to Lie algebras or superalgebras. The properties of $\mathcal{U}(\mathfrak{a})$ will be studied elsewhere.

In the case $\mathfrak{a} = asl_2(\mathbb{K})$, one readily obtains:

Proposition 3.2. The universal enveloping algebra $\mathcal{U}(asl_2(\mathbb{K}))$ is the associative algebra generated by three elements: *A*, *B*, and \mathcal{E} satisfying the relations (1.2).

One can show that $\mathcal{U}(\mathfrak{a})$ is, indeed, a quotient of the universal enveloping algebra $\mathcal{U}(\mathfrak{g}_{\mathfrak{a}})$ of the corresponding superalgebra $\mathfrak{g}_{\mathfrak{a}}$. In particular, the algebra $\mathcal{U}(\mathfrak{a}\mathfrak{sl}_2)$ can be viewed as a quotient of $\mathcal{U}(\mathfrak{osp}(1|2))$. Recall that the algebra $\mathcal{U}(\mathfrak{osp}(1|2))$ is the associative graded algebra generated by the even elements E, F, H and the odd elements A, B satisfying the relations 3.9.

Proposition 3.3. One has

$$\mathcal{U}(\mathrm{asl}_2) \simeq \mathcal{U}(\mathrm{osp}(1|2)) \big/ (\mathcal{E}^2 = \mathcal{E})$$
 ,

where $\mathcal{E} = AB - BA$.

Proof. Using computations similar to those in the proof of Lemma 3.1, one checks that the algebra $\mathcal{U}(\operatorname{osp}(1|2))$ admits the following alternative presentation: two odd generators *A*, *B* and one even generator \mathcal{E} satisfying the three first relations of (1.2).

3.4 The twisted adjoint action and ghost Casimir element

The notion of the *twisted adjoint action* of Lie superalgebras was introduced in [2]. For X an element of \mathfrak{g} and Y an element of $\mathcal{U}(\mathfrak{g})$,

$$\widetilde{ad}_X Y := XY - (-1)^{p(X)(p(Y)+1)} YX.$$
(3.11)

Remarkably, \widetilde{ad} defines an osp(1|2)-action on $\mathcal{U}(osp(1|2))$.

The relation of the twisted adjoint action and representations of $asl_2(\mathbb{K})$ is elucidated by the following elementary but important observation.

Lemma 3.4. If X is an odd element of osp(1|2), then the action (3.11) coincides with the anticommutator (2.5).

The *ghost Casimir* elements are the invariants of the twisted adjoint action; see [2], and also [4]. In the case of osp(1|2), the ghost Casimir element is particularly simple:

$$\Gamma = AB - BA - \frac{1}{2} \operatorname{Id}. \tag{3.12}$$

It satisfies $\widetilde{\operatorname{ad}}_X \Gamma = 0$ for all $X \in \operatorname{osp}(1|2)$.

We are ready to prove Formula (1.4) of Theorem 3. The operator ${\cal E}$ and the ghost Casimir Γ are obviously related by

$$\Gamma = \mathcal{E} - \frac{1}{2}$$
 Id.

It follows that the second and third relations in (1.2) are equivalent to $\widetilde{ad}_A \Gamma = 0$ and $\widetilde{ad}_B \Gamma = 0$, respectively, while the relation $\mathcal{E}^2 = \mathcal{E}$ is equivalent to $\Gamma^2 = \frac{1}{4}$ Id.

3.5 The classical Casimir elements

The operator \mathcal{E} is also related to the usual Casimir elements C of $\mathcal{U}(osp(1|2))$ and C_0 of $\mathcal{U}(sl_2)$. Recall

$$C = EF + FE + \frac{1}{2}(H^2 + AB - BA),$$

 $C_0 = EF + FE + \frac{1}{2}H^2.$

We easily see

 $\mathcal{E}=2(C-C_0).$

This implies that if V is an irreducible representation of $asl_2(\mathbb{K})$, then $\mathcal{E}|_{V_0}$ and $\mathcal{E}|_{V_1}$ are proportional to Id.

Moreover, straightforward computation in $\mathcal{U}(osp(1|2))$ gives the following relation (first obtained in [6])

$$4(C - C_0)^2 = 4C - 2C_0.$$

It follows that in $\mathcal{U}(osp(1|2))$ the relation $\mathcal{E}^2 = \mathcal{E}$ is equivalent to $\mathcal{C} = 0$. Theorem 3 is proved.

4 Weighted Representations of $asl_2(\mathbb{K})$

In this section, we introduce the notion of weighted representation of the Lie antialgebra $asl_2(\mathbb{K})$. This class of representation is characterized by the property that the action of the Cartan element H of osp(1|2) has at least one eigenvector. We do not require a priori the eigenspaces to be finite-dimensional.

4.1 The definition

Let V be a representation of $asl_2(\mathbb{K})$. We introduce the subspaces

$$V_{\ell} = \{ v \in V \mid Hv = \ell v \}, \quad \ell \in \mathbb{K}.$$

When $V_{\ell} \neq \{0\}$, we call it the *weight space* of V with weight ℓ . We denote by $\Pi_H(V)$ the set of weights of the representation V. The following statement is straightforward.

Lemma 4.1. With the above notation,

- (i) The element A (resp. B) maps V_{ℓ} into $V_{\ell+1}$ (resp. $V_{\ell-1}$).
- (ii) The sum $\sum_{\ell \in \Pi_H(V)} V_\ell$ is direct in V.

(iii) The space

$$Wt(V) := \bigoplus_{\ell \in \Pi_H(V)} V_\ell$$

is a subrepresentation of V.

Corollary 4.2. If V is an irreducible representation, then either

$$Wt(V) = \{0\} \quad \text{or} \quad Wt(V) = V.$$

Definition 4.3. Any representation V of $asl_2(\mathbb{K})$ such that $Wt(V) \neq \{0\}$, is called a *weighted representation*.

4.2 The family of weighted representations $V(\ell)$

For every $\ell \in \mathbb{K}$, we construct an irreducible weighted representation of $asl_2(\mathbb{K})$, which we denote by $V(\ell)$. This representation contains an odd vector e_1 such that $He_1 = \ell e_1$ and, by irreducibility, every element of $V(\ell)$ is a result of the (iterated) $asl_2(\mathbb{K})$ -action on e_1 .

(a) The case where ℓ is not an odd integer. Consider a family of linearly independent vectors $\{e_k\}_{k\in\mathbb{Z}}$. We set $V(\ell) = \bigoplus_{k\in\mathbb{Z}} \mathbb{K}e_k$ and define the operators A and B on $V(\ell)$ by

$$A e_k = e_{k+1}$$
,
 $B e_k = ((1 - \ell)/2 - [k/2])e_{k-1}$,

where $k \in \mathbb{Z}$ and [k/2] denotes the integral part of k/2. The operator \mathcal{E} is defined by $\mathcal{E} = AB - BA$. Introduce the following \mathbb{Z}_2 -grading on $V(\ell)$:

$$V(\ell)_0 = \bigoplus_{k \in \text{ven}} \mathbb{K} e_k, \quad V(\ell)_1 = \bigoplus_{k \text{ odd}} \mathbb{K} e_k.$$
 (4.13)

It is easy to see that the operators A and B are odd operators with respect to this grading, whereas \mathcal{E} is even.

Proposition 4.4. The space $V(\ell)$ is an $asl_2(\mathbb{K})$ -representation.

Proof. By simple straightforward computations, we obtain:

$$A\mathcal{E} + \mathcal{E}A = A, \quad B\mathcal{E} + \mathcal{E}B = B.$$

Moreover, on the basis elements e_k of $V(\ell)$, one has $\mathcal{E}e_k = e_k$ if k is odd, and $\mathcal{E}e_k = 0$ if k is even, so $\mathcal{E}^2 = \mathcal{E}$.

It is easy to see that the basis elements e_k are weight vectors. Indeed, one checks

$$He_k = (\ell + k - 1)e_k, \quad k \in \mathbb{Z}.$$
 (4.14)

In particular, the element e_1 is a weight vector of weight ℓ and generates the representation $V(\ell)$.

The actions on the basis elements e_k 's can be pictured as follows:

The entire space $V(\ell)$ can be pictured as an infinite chain of the above diagrams.

(b) Construction of $V(\ell)$ for ℓ a positive odd integer. Consider a family of linearly independent vectors $\{e_k\}_{k \in \mathbb{Z}, k \geq 2-\ell}$. We set $V(\ell) = \bigoplus_{k \geq 2-\ell} \mathbb{K}e_k$, and we define the operators A and B on $V(\ell)$ by similar formulas:

$$egin{aligned} A\,e_k &= e_{k+1}, \quad k \geq 2-\ell, \ B\,e_k &= ((1-\ell)/2 - [k/2])e_{k-1}, \quad k > 2-\ell, \ B\,e_{2-\ell} &= 0. \end{aligned}$$

14 S. Morier-Genoud

The operator \mathcal{E} is again determined by $\mathcal{E} = AB - BA$. The \mathbb{Z}_2 -grading on $V(\ell)$ is defined by the same formula (4.13). The result of Proposition 4.4 holds true.

The element e_1 is an odd weight vector of weight ℓ , which generates the representation $V(\ell)$. However, the vector $e_{2-\ell}$ is more interesting.

Definition 4.5. A lowest (resp. highest) weight representation is one that contains a weight vector v, such that Bv = 0 (resp. Av = 0) and the vectors A^nv (resp. B^nv) span V; the vector v is called a lowest (resp. highest) weight vector.

Clearly, the vector $e_{2-\ell}$ is a lowest weight vector of the representation $V(\ell)$ if ℓ a positive odd integer. One obtains the following diagram.

Viewed as a representation of osp(1|2), $V(\ell)$ is a Verma module.

(c) Construction of $V(\ell)$ for ℓ a negative odd integer. Consider a family of linearly independent vectors $\{e_k\}_{k\in\mathbb{Z},k\leq-\ell}$. We set $V(\ell) = \bigoplus_{k\leq-\ell} \mathbb{K}e_k$, and we define the operators A and B on $V(\ell)$ by

$$egin{aligned} &Ae_k = ((1-\ell)/2 + [k/2])e_{k+1}, &orall k < -\ell, \ &Ae_{-\ell} = 0, \ &Be_k = e_{k-1}, &orall k \leq -\ell. \end{aligned}$$

As before, these operators define an $asl_2(\mathbb{K})$ -representation. The vector $e_{-\ell}$ is a highest weight vector of $V(\ell)$.

4.3 Geometric realization

It was shown in [5] that $\operatorname{asl}_2(\mathbb{K})$ has a representation in terms of vector fields on 1|1-dimensional space. More precisely, consider $\mathscr{F} = C_{\mathbb{K}}^{\infty}(\mathbb{R})$, the set of \mathbb{K} -valued C^{∞} -functions of one real variable *x*. Introduce $\mathscr{A} = \mathscr{F}[\xi]/(\xi^2)$ with the \mathbb{Z}_2 -grading $\mathscr{A}_0 = \mathscr{F}, \mathscr{A}_1 = \mathscr{F}\xi$. Define the vector field

$$\mathcal{D} = \frac{\partial}{\partial \xi} + \xi \, \frac{\partial}{\partial x}$$

It is easy to check that the vector fields

$$A = \mathcal{D}, \quad B = x\mathcal{D}, \quad \mathcal{E} = \xi \mathcal{D} \tag{4.15}$$

satisfy the relations 1.2. Therefore they define an $asl_2(\mathbb{K})$ -action on \mathscr{A} .

Consider the function

$$e_1 = x^{\lambda} \xi$$
,

where $\lambda \in \mathbb{K}$. It turns out that this function generates a weighted representation of $\operatorname{asl}_2(\mathbb{K})$, isomorphic to $V(-2\lambda - 1)$. Note that the case λ is an integer gives the highest and lowest weight irreducible representations.

4.4 Classification of weighted representations

The following statement shows that the representations $V(\ell)$ are, indeed, irreducible; it also classifies all the isomorphisms between these representations.

Proposition 4.6. (i) The representation $V(\ell)$ is irreducible for every $\ell \in \mathbb{K}$.

(ii) If ℓ and ℓ' are not odd integers, then $V(\ell) \simeq V(\ell')$ if and only if $\ell' - \ell = 2 m$ for some $m \in \mathbb{Z}$.

(iii) If ℓ and ℓ' are odd integers, then $V(\ell) \simeq V(\ell')$ if and only if $\ell \ell' > 0$.

Proof. (i) Suppose $V' \subset V(\ell)$ is a subrepresentation. For any nonzero $v \in V'$, write

$$v = \sum_{1 \le i \le N} lpha_i e_{k_i}$$
 ,

with $\alpha_i \neq 0$, for all $1 \leq i \leq N$. Using (4.14), we obtain

$$H^p v = \sum_{1 \leq i \leq N} lpha_i (\ell+k_i-1)^p e_{k_i}$$
 ,

where $0 \le p \le N - 1$. We may assume the coefficients $(\ell + k_i - 1)$ are nonzero, i.e. the basis elements occurring in the decomposition of v are not of weight zero.

The above equations form a linear system of Vandermonde type with distinct nonzero coefficients, and so they are solvable. We can express the elements e_{k_i} as linear combinations of $H^p v$. It follows that the vectors e_{k_i} are in V'. Applying A and B to e_{k_i} , we produce all the vectors e_k , $k \in \mathbb{Z}$. Hence, the basis vectors e_k are in V' for all $k \in \mathbb{Z}$. This implies $V' = V(\ell)$.

(ii) Denote by $\{e_k\}_k$ the standard basis of $V(\ell)$, and by $\{e'_k\}_k$ the standard basis of $V(\ell')$. Suppose there exists an isomorphism $\Phi : V(\ell') \to V(\ell)$. The vector $\Phi(e'_1)$ is a weighted vector (of weight ℓ') in $V(\ell)$. Since the weights in $V(\ell)$ are of the form $\ell + k$ for some $k \in \mathbb{Z}$ and the corresponding weight space is $\mathbb{K}e_{k+1}$, we have $\Phi(e'_1) = \alpha e_{k+1}$ for some $\alpha \in \mathbb{K}^*, k \in \mathbb{Z}$, and $\ell' = \ell + k$. Moreover, $\mathcal{E} \Phi(e'_1) = \Phi(e'_1)$, so e_{k+1} is an odd vector, i.e. k is even. This proves that the condition $\ell' = \ell + 2m$ for some $m \in \mathbb{Z}$ is necessary for $V(\ell) \simeq V(\ell')$.

Conversely, suppose that $\ell' = \ell + 2m$, for some $m \in \mathbb{Z}$. It is easy to check that the linear map $\Phi : V(\ell') \mapsto V(\ell)$ defined by

$$\Phi(e'_k) = e_{k+2m} \tag{4.16}$$

for all $k \in \mathbb{Z}$ is an isomorphism of representation.

(iii) If ℓ and ℓ' have opposite sign then $V(\ell)$ and $V(\ell')$ cannot be isomorphic, since on one of the spaces A acts injectively and on the other it has a nontrivial kernel. If ℓ and ℓ' have same sign then $\ell' - \ell = 2m$ and (4.16) is again an isomorphism.

4.5 The structure of weighted representations

In this section we establish two combinatorial lemmas. Consider a nontrivial irreducible representation V of $asl_2(\mathbb{K})$. Recall that the \mathbb{Z}_2 -grading $V = V_0 \oplus V_1$ corresponds to the decomposition with respect to the eigenvalues of \mathcal{E} (see Lemma 1.1).

Lemma 4.7. If there exists a nonzero element $v \in V$ such that $Hv = \ell v, \ell \in \mathbb{K}$, then there exist nonzero elements $v_i \in V_i$ and $\ell_i \in \mathbb{K}$, i = 0, 1, such that $Hv_i = \ell_i v_i$.

Proof. In the case that v is homogeneous, i.e. $v \in V_i$, we can choose for v_{1-i} the vector Av or Bv. Indeed, one has

$$HAv = [H, A]v + AHv = Av + \ell Av = (\ell + 1)Av,$$

$$HBv = [H, B]v + BHv = -Bv + \ell Av = (\ell - 1)Bv.$$
(4.17)

Note that the two vectors Av and Bv are not simultaneously zero, otherwise $V = \mathbb{K}v$ is the trivial representation.

If v is not a homogeneous element, we can write $v = v_0 + v_1$ with $v_0 \neq 0 \in V_0$ and $v_1 \neq 0 \in V_1$. One then has

$$Hv = Hv_0 + Hv_1$$
 and $Hv = \ell v = \ell v_0 + \ell v_1$.

Furthermore, Hv_0 is an element of V_0 and Hv_1 is an element of V_1 , since the operator H = -(AB + BA) is even. Therefore, by uniqueness of the writing in $V_0 \oplus V_1$, one has $Hv_0 = \ell v_0$ and $Hv_1 = \ell v_1$.

Lemma 4.8. If $v \in V_i$ is such that $Hv = \ell v$, then

(i) for all $k \ge 1$,

$$AB^k v = \lambda_k B^{k-1} v,$$

with $\lambda_k = [\frac{k-i}{2}] + \frac{i-\ell}{2}$, where $[\frac{k-i}{2}]$ is the integral part of (k-i)/2; (ii) for all $k \ge 1$,

 $BA^k v = \mu_k A^{k-1} v,$

with $\mu_k = -[\frac{k-i}{2}] - \frac{i+\ell}{2}$.

Proof. We first establish the formulas for k = 1. On the one hand,

$$ABv = -Hv - BAv = -\ell v - BAv$$

and on the other hand,

$$ABv = \mathcal{E}v + BAv = iv + BAv.$$

By adding or subtracting these two identities, we deduce

$$2ABv = (i - \ell)v$$
 and $2BAv = (-i - \ell)v$.

Thus, $\lambda_1 = (i - \ell)/2$ and $\mu_1 = (-i - \ell)/2$; so, the k = 1 case is established. By induction on k,

$$ABB^{k-1}v = -HB^{k-1}v - BAB^{k-1}v$$

= -(\(\ell - (k - 1))B^kv - \(\lambda_{k-1}B^{k-1}v\)
= (-\(\ell + k - 1 - \(\lambda_{k-1}))B^{k-1}v.

We deduce the relations

$$egin{aligned} \lambda_k &= -\ell + k - 1 - \lambda_{k-1} \ &= -\ell + k - 1 - (-\ell + (k-2) - \lambda_{k-2}) \ &= 1 + \lambda_{k-2}. \end{aligned}$$

Knowing $\lambda_1 = \frac{i-\ell}{2}$, we can now obtain the explicit expression of λ_k :

$$\lambda_k = \left[\frac{k-i}{2}\right] + \frac{i-\ell}{2}.$$

Hence part (i).

Part (ii) can be proved in a similar way.

4.6 Proof of Theorem 1

Let *V* be an irreducible finite-dimensional representation of $asl_2(\mathbb{K})$. Under the actions of the elements $E = A^2$, $F = -B^2$ and *H*, the space *V* is a sl_2 -module. Therefore, there exists a weight vector *v* such that $Hv = \ell v$ for some $\ell \in \mathbb{Z}$.

By lemma 4.7, we can assume that v is a homogeneous element: $v \in V_i$, i = 0, 1. Let us consider the family of vectors

$$\mathcal{F} = \{\ldots, B^k v, \ldots, Bv, v, Av, \ldots, A^k v, \ldots\}.$$

From formula (4.17) we know that all the nonzero vectors of \mathcal{F} are eigenvectors of H with distinct eigenvalues, $\ell \pm k, k \in \mathbb{N}$. Therefore they are linearly independent.

Hence there exists $N \ge 1$ such that $B^{N-1}v \ne 0$ and $B^kv = 0$ for all $k \ge N$, and $M \ge 1$ such that $A^{M-1}v \ne 0$ and $A^kv = 0$ for all $k \ge M$. Using Lemma 4.8, we deduce $\lambda_N = 0$

and $\mu_M = 0$. This leads to

$$\left[\frac{N-i}{2}\right] + \frac{i-\ell}{2} = 0, \quad -\left[\frac{M-i}{2}\right] - \frac{i+\ell}{2} = 0.$$

Subtracting these equations, we obtain:

$$\left[\frac{N-i}{2}\right] + \left[\frac{M-i}{2}\right] + i = 0.$$

Since $N, M \ge 1$ and i = 0, 1, we conclude N = M = 1 and i = 0, so V is the trivial representation.

Finally, if V is an arbitrary finite-dimensional representation, then V is completely reducible, by the classical theorem in the osp(1|2)-case.

Theorem 1 is proved.

4.7 Proof of Corollary 1.2

Lemma 4.9. V(-1) is the only nontrivial irreducible highest weight representation of $asl_2(\mathbb{K})$.

Proof. Consider an irreducible representation *V* containing a weight vector *v* of weight ℓ such that Av = 0. We write $v = v_0 + v_1$ with $v_i \in V_i$, i = 0, 1. We also have $Av_i = 0$ and $Hv_i = \ell v_i$ for i = 0, 1.

We first show that $v_0 = 0$. Since $Av_0 = 0$, we get $Hv_0 = ABv_0 = -\mathcal{E}v_0 = 0$. The vector v_0 is a highest weight vector of weight 0 for the action of $sl_2(\mathbb{K})$. In consequence, v_0 is also a lowest weight vector, i.e. $B^2v_0 = 0$. Thus, the space $Span(v_0, Bv_0)$ is stable, hence $v_0 = 0$.

Thus v belongs to V_1 . Let us use Lemma 4.8, part (ii). From the relation BAv = 0, we deduce $\mu_1 = 0$ and thus $\ell = -1$. This implies that all the constants λ_k from Lemma 4.8, part (i) are nonzero. By induction we deduce, using Lemma 4.8, part (i), that all the vectors $B^k v, k \in \mathbb{N}$ are nonzero. Moreover, these vectors are linearly independent since they are eigenvectors for H associated to distinct eigenvalues. By setting $e_k = B^{1-k}v, k \in \mathbb{Z}, k \leq 1$, we obtain V(-1) as a subrepresentation of V. The irreducibility assumption then gives: $V \simeq V(-1)$.

In the same way, we show that V(1) is the only nontrivial irreducible lowest weight representation of $asl_2(\mathbb{K})$.

4.8 Complete classification

The following proposition, together with Proposition 4.6, provides a complete classification of weighted representations of $asl_2(\mathbb{K})$.

We now prove Theorem 1.2.

Fix a weight vector $v \in V_1$ (such a vector exists by Lemma 4.7) of some weight $\ell \in \mathbb{K}$. Consider the family $\mathcal{F} = \{A^k v, B^k v, k \in \mathbb{N}\}.$

(a) Suppose that ℓ is not an odd integer. It is easy to see that the constants λ_k and $\mu_k, k \in \mathbb{N}$, from Lemma 4.8 never vanish. Indeed,

$$\lambda_k = 0 \Rightarrow \ell = 2\left[\frac{k-1}{2}\right] + 1, \quad \mu_k = 0 \Rightarrow \ell = -2\left[\frac{k-1}{2}\right] - 1.$$
(4.18)

By induction, we deduce that all the elements of \mathcal{F} are nonzero. Moreover, they are eigenvectors of the operator H with distinct eigenvalues $\ell \pm k$, where $k \in \mathbb{N}$. Hence they are linearly independent. Setting

$$e_k = egin{cases} A^{k-1}v, & k \geq 1 \ B^{1-k}v, & k \leq 0, \end{cases}$$

we see that $V(\ell)$ is a subrepresentation of *V*. By irreducibility, $V \simeq V(\ell)$.

(b) Suppose that ℓ is a positive odd integer. From the first statement of 4.18, we deduce the existence of an integer $N \ge 1$ such that $\lambda_N = 0$ and $\lambda_k \ne 0$ for all k < N. Hence

$$B^k v \neq 0$$
, $\forall k < N$, $AB^N v = 0$.

If $B^N v \neq 0$, then it is a highest weight vector. By Lemma 4.9, we obtain $V \simeq V(-1)$. But, in the highest weight representation V(-1), the set of weights is the set of negative integers. We obtain a contradiction as v has positive weight. It follows that $B^N v = 0$, and so $B^{N-1}v$ is a lowest weight vector. We conclude $V \simeq V(1)$.

(c) Suppose finally that ℓ is a negative odd integer. Then similar arguments show: $V\simeq V(-1).$

Theorem 1.2 is proved.

Remark 4.10. We have proven that any irreducible weighted representation is an irreducible Harish-Chandra representation (i.e. its weight spaces are all finite-dimensional). A classification of the irreducible Harish-Chandra representations of osp(1|2) over the field of complex numbers is given in [3]. The correspondence between the representations $V(\ell)$ and the representations given in Theorem 5.13 of [3] is the following:

- (a) If $\ell \in \mathcal{P}^+$ is not an odd integer, then $V(\ell) \simeq \mathcal{D}(0, \ell/2)$;
- (b) The lowest weight representation is $V(1) \simeq [-1/2] \downarrow;$
- (c) The highest weight representation is $V(-1) \simeq [1/2] \uparrow$.

Appendix: The Tensor Product of Two Representations

It is clear that the representations of $asl_2(\mathbb{K})$ are not a tensor product category. Indeed, given two representations V and W of osp(1|2) with trivial action of the Casimir element, $V \otimes W$ does not have trivial Casimir element, and so by Theorem 3 it cannot be anasl₂(\mathbb{K})-representation.

An attempt to define an action of $asl_2(\mathbb{K})$ on $V \otimes W$ leads to a deformation of the asl_2 -relations by the Casimir element of $\mathcal{U}(osp(1|2))$. The algebraic meaning of this deformation is not yet clear.

The operators A and B have canonical lifts to $V \otimes W$ according to the Leibniz rule:

$$\widetilde{A} = A \otimes \mathrm{Id} + \mathrm{Id} \otimes A$$
, $\widetilde{B} = B \otimes \mathrm{Id} + \mathrm{Id} \otimes B$,

since they belong to the osp(1|2)-action. It is then natural to define the lift of operator \mathcal{E} by $\widetilde{\mathcal{E}} := \widetilde{A}\widetilde{B} - \widetilde{B}\widetilde{A}$. One immediately obtains the explicit formula

$$\widetilde{\mathcal{E}} = \mathcal{E} \otimes \mathrm{Id} + \mathrm{Id} \otimes \mathcal{E} + 2(A \otimes B - B \otimes A).$$

The following statement is straightforward.

Proposition 4.11. The operators \widetilde{A} , \widetilde{B} , and $\widetilde{\mathcal{E}}$ satisfy the following relations:

$$\begin{split} \widetilde{A}\widetilde{B} &- \widetilde{B}\widetilde{A} = \widetilde{\mathcal{E}}, \\ \widetilde{A}\widetilde{\mathcal{E}} &+ \widetilde{\mathcal{E}}\widetilde{A} = \widetilde{A}, \\ \widetilde{B}\widetilde{\mathcal{E}} &+ \widetilde{\mathcal{E}}\widetilde{B} = \widetilde{B}, \\ &\widetilde{\mathcal{E}}^2 = \widetilde{\mathcal{E}} + 4\,\bar{\mathcal{C}}, \end{split}$$
(4.19)

22 S. Morier-Genoud

where

$$\bar{C} = E \otimes F + F \otimes E + \frac{1}{2}(H \otimes H + A \otimes B - B \otimes A).$$

This means that two of the relations (1.2) are satisfied, but not the last asl_2 -relation $\mathcal{E}^2 = \mathcal{E}$.

Let us recall that the element $C \in \mathcal{U}(osp(1|2))$ given by

$$C = EF + FE + \frac{1}{2}(H^2 + AB - BA)$$

is nothing but the classical Casimir element. The operator \overline{C} is the diagonal part of the standard lift of C to $V \otimes W$. In particular, the operator \overline{C} commutes with the action of $\operatorname{asl}_2(\mathbb{K})$ and $\operatorname{osp}(1|2)$:

$$[\overline{C}, \widetilde{A}] = [\overline{C}, \widetilde{B}] = [\overline{C}, \widetilde{\mathcal{E}}] = 0.$$

This is how the Casimir operator of osp(1|2) appears in the context of representations of $asl_2(\mathbb{K})$.

The relations (4.19) look like a "deformation" of the asl_2 -relations (1.2) with one parameter that commutes with all the generators. It would be interesting to find a precise algebraic sense of this deformation.

Acknowledgment

I am grateful to V. Ovsienko for the statement of the problem and enlightening discussions.

References

- Arnal, D., H. Ben Amor, and G. Pinczon. "The structure of sl(2, 1) supersymmetry." Pacific Journal of Mathematics 165, no. 1 (1994): 17–49.
- [2] Arnaudon, D., M. Bauer, and L. Frappat. "On Casimir's ghost." Communications in Mathematical Physics 187, no. 2 (1997): 429–39.
- [3] Benamor, H., and G. Pinczon. "Extensions of representations of Lie superalgebras." *Journal of Mathematical Physics* 32, no. 3 (1991): 621–29.
- [4] Gorelik, M. "On the ghost centre of Lie superalgebras." Annales de LInstitut Fourier 50, no. 6 (2000): 1745–64.
- [5] Ovsienko, V. "Lie antialgebras." (2007): preprint arXiv:0705.1629.
- [6] Pinczon, G. "The enveloping algebra of the Lie superalgebra osp(1, 2)." Journal of Algebra 132, no. 1 (1990): 219–42.