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REALISATION OF LUSZTIG CONES

PHILIPPE CALDERO, ROBERT MARSH, AND SOPHIE MORIER-GENOUD

ABSTRACT. Let Ug(g) be the quantised enveloping algebra associated to a sim-
ple Lie algebra g over C. The negative part U~ of Uy (g) possesses a canonical
basis B with favourable properties. Lusztig has associated a cone to a reduced
expression i for the longest element wg in the Weyl group of g, with good prop-
erties with respect to monomial elements of 3. The first author has associated
a subalgebra A; of U™, compatible with the dual basis B*, to each reduced
expression i. We show that, after a certain twisting, the string parametrisa-
tion of the adapted basis of this subalgebra coincides with the corresponding
Lusztig cone. As an application, we give explicit expressions for the generators
of the Lusztig cones.

1. INTRODUCTION

Let U = U,(g) be the quantum group associated to a semisimple Lie algebra
g. The negative part U~ of U has a canonical basis B with favourable properties
(see Kashiwara [14] and Lusztig [18] §14.4.6]). For example, via action on highest
weight vectors it gives rise to bases for all the finite-dimensional irreducible highest
weight U-modules. The dual canonical basis B* of the positive part Ut has good
multiplicative properties. Two elements of B* are said to be multiplicative if their
product also lies in B* up to a power of q.

The first author has shown that for each reduced expression i = (i1,42,...,iN)
for the longest element wy (see § 22) in the Weyl group of g, there is a corresponding
subalgebra A; of U™, known as a standard adapted subalgebra, with basis given
by A; N B*, consisting entirely of elements which are pairwise multiplicative. The
subalgebras A; are g-polynomial algebras, i.e., algebras given by generators and ¢-
commuting relations, with GK-dimension N = [(wg). Note that adapted algebras
were introduced for the Berenstein-Zelevinsky conjecture and are connected with
the larger theory of cluster algebras [T1].

By a Lusztig cone of U, we mean the cone £; C NV associated by Lusztig (see [19]
§16]) to each reduced expression i for wg. In [T9] these cones arise naturally from
the linear term of a nonhomogeneous quadratic form associated to i which is used
by Lusztig to give a positivity condition for a monomial
(1.1) FRe) e
to lie in the canonical basis. Here the F; are the standard generators of U~.
Monomials of this form with (a1, as, ..., an) lying in the Lusztig cone corresponding
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to i lie in the canonical basis in types A1, As and Az [19], in type A4 [21] and in
type Bz [30]; see also [26]. Counterexamples of M. Reincke [26] and N. H. Xi [31]
show that this fails in general in type As. Recently, R. Bedard [2] has analysed the
quadratic forms associated to these monomials and, as an application, was able to
compute some interesting examples in types Dy, As and affine A;.

Note that Lusztig cones are used to describe regular functions on a reduced
real double Bruhat cell of the corresponding algebraic group [32], they have links
with primitive elements in the dual canonical basis (this can be seen using [4])
and therefore with the representation theory of affine Hecke algebras [17], and they
are known to correspond to regions of linearity of the Lusztig reparametrisation
functions (see [10]).

Given a reduced expression i for wg, elements of the dual canonical basis can be
parametrised via the string parametrisation in direction i (see [4, §2], [15] and [24]
§2]), which we denote by ¢; : B* — C;, where C; C N¥ is known as the string cone
corresponding to i.

Our main result is that the set of string parameters (in direction i) of a certain
twisting of the standard adapted subalgebra of the dual canonical basis correspond-
ing to i coincides with the Lusztig cone corresponding to i. The twisting is done
with the help of the Schiitzenberger involution. This gives a realisation of all Lusztig
cones in terms of the dual canonical basis. It also implies that all Lusztig cones are
simplicial (generalising results of Bedard [I] and the second author [22]), and en-
ables us to give an explicit description of their spanning vectors; see Theorem B0l

The paper is organised as follows. Sections 1 and 2 give preliminary results
on quantum groups and the canonical basis, including its parametrisations asso-
ciated to a reduced word, and adapted algebras. In Section 4, we introduce the
Schiitzenberger involution ¢ and its action on the dual canonical basis. In Section
5, we recall some facts on geometric lifting of the canonical basis in order to give
a formula which describes ¢ in terms of the parametrisation of the dual canonical
basis. A remarkable property is that, with a good choice of parametrisations, the
action of the Schiitzenberger involution on the dual canonical basis is given by an
affine map.

In Sections 6 and 7, we apply the results from previous sections to describe
explicitly the twisted standard adapted subalgebra associated to a reduced word i,
in terms of i-string parametrisation. By the multiplicative property of the adapted
subalgebra and the “affine map” property, this can be provided by an N x N matrix
and a column vector. A combinatorial argument, together with the known PBW-
parametrisation of the adapted basis of a standard adapted subalgebra, allows us to
prove the main theorem: in Section 8, we realise the Lusztig cones in terms of the
string parametrisation of twisted standard adapted subalgebras. As an application,
we give an explicit formula for the generators of the cones.

2. NOTATION AND PRELIMINARIES

2.1. Let A= (asj)1<i,j<n be the Cartan matrix of a finite dimensional semi-simple
Lie algebra g over C. Let g =n~ @ h @ n be a triangular decomposition, where b is
a Cartan subalgebra and where n™, n are opposite maximal nilpotent subalgebras
of g. Let {a;}; be the set of simple roots of the root system A resulting from this
decomposition. The set of positive roots is denoted by A™T.
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Let P be the weight lattice generated by the fundamental weights w;, 1 < i < n.
Set PT := 3. Z>qw;, endowed with the ordering Y, \iww; < >, piww; < N < fi;.
The Weyl group W is generated by the reflections s; corresponding to the simple
roots. We denote by (, ) the W-invariant form on P; we have a;; = (o, o)) for all
i, j, where the a;/’s are the simple coroots.

For n a nonnegative integer and « a positive root, we set g, = glo)/2, [n)e =

Lot [n]y) = [aln — Ta . [1a.

2.2. Let W be the Weyl group of g, with Coxeter generators si, sa,...,s, and
corresponding length function. An expression s;, s;, - - - 8;, for an element of w is
called reduced if it is of minimal length; we identify such an expression with the
tuple i = (i1,42,...,%m). Set N := dimn. It is known that N is the length of the
longest element wq of the Weyl group. Let R be the set of reduced expressions for
wo-

Fix i in R. Let L; be the set of points (¢1,...,¢cn) € ngo with the following
property : for any two indices p < p’ in {1,..., N} such that i;, =iy =dandig # 14
whenever p < g < p’, we have

Cp + & + E : @ipigCq = 0-
p<q<p’

The cone L; is the so-called Lusztig cone associated to the reduced expression
i. This is defined in [19] §16] for the simply-laced case. We use here a natural
generalisation to the general case which also appears implicitly (for type Bs) in [30].

2.3. Let d be an integer such that (P, P) C (2/d)Z. Let ¢ be a indeterminate and
set K = (C(ql/ 4). We define the simply connected quantised enveloping K-algebra
U,(g) as in [12]. Set d; = (@, a;)/2 and ¢; = ¢% for all i. Let U,(n), resp. U,(n™),
be the subalgebra generated by the canonical generators F; := E,,, resp. F; := F,,,
of positive, resp. negative, weights, subject to the quantum Serre relations. For
all A in P, let K be the corresponding element in the algebra U((I) = K[P] of the
torus of U,(g) and K; := K,,. We have the triangular decomposition U,(g) =
Uy(n™) @ UY ® Uy(n). Set

Uy(b) = Ug(n) @ UY, Uy(67) =Ug(n™) @ U

The algebra U,(g) is endowed with a structure of Hopf algebra with comultipli-
cation A, antipode S and augmentation € given by

AE;=E®1+K,®E, AF;=F,0K;'+1®F, AK,=K,® K,
S(E;) = —K;'E;, S(F;) = —FK;, S(K))=K_,
E(Ez) = €(Fi) = 0, €(K)\) =1.

Let (, ) be the Hopf bilinear form, [27], on U, (b) x Uy(b~), uniquely defined by

(Ei, Fy) =6;(1—¢q})™ ", 1<i,j<n,
(XK, YK,) =¢M (X,Y), X e Uy(n), Y € Uy(n™).
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2.4. In this section, we define automorphisms of the quantised enveloping algebra
and the Poincaré-Birkhoff-Witt basis. The automorphisms T3, 1 < i < n, as in [18],
are given by

T,(E;) = —K; 'F;,

—k
4y, .. . .
Ti(E;) = Z (_1)k7[k] &i .'EijEf, 1<i,5<n,i#j,

o[l a
k+l=—a7¢j 3
Ti(F;) = —E; K5,
k
Ay, . . .
Tz(FJ): Z WFZFJFZC’ ].SZ,]SH,Z#],
k+l=—a;; K K

Ti(KOtj) = KSi(O’J‘)’ 1<4,5<n.

It is known that the T;’s define a braid action on Uy(g). Fix i = (i1,...,in) in
R. For each k, 1 < k < N, set O := $;; ...8i,_,(ag). It is well known that
{Br, 1 <k < N} is the set of positive roots and that

Bi<PBa<...<fN

defines a so-called convex ordering on A*. This ordering identifies the semigroup
Zég with the semigroup ZJZVO. In the sequel, we denote by {ex,1 < k < N} the
natural basis of this semigroup.

For all k, define E}ak = Eg, = T;,...T;, (Eq,, ). Foralt = () € ZJZVO,

set Bi(t) = B(t) == BYY .. EYY), where By = arEg - Tt s known that

{E(t), t € Z¥,} is a basis of U,(n) called the Poincaré-Birkhoff-Witt basis, in short
PBW-basis, associated to the reduced expression i. In the same way, we can define
the PBW-basis {F(t), t € ZY,} of Uy(n™).

We define now the automorphisms ~ (over C), w (over K), and the antiautomor-
phism o (over K) of U,(g) by

E;=E;, K;=K; "

(2

wE) =F,wK;)=K ', wF)=E,w(q) =g 1<i<n,

(2

)
o(E))=E;, 0(K;)=K; ", o(F,)=F;,0(q)=¢q 1<i<n.

(2

Note that w is a coalgebra antiautomorphism.

2.5. For any (left) Uy(g)-module M, and any weight p in P, let M, = {m € M :
Kyx.m = ¢™#m, VA € P} be the subspace of M of weight p. For all X in Pt let
V4(A) be the simple U, (g)-module with highest weight A and highest weight vector
vx. The module V,()\) satisfies the Weyl character formula. For X in P*, V,(A\)*
is naturally endowed with a structure of right U,(g)-module. Let ny be its weight
element such that 7y (vy) = 1. For A, g in P, the module V,(\) ® V, (1), endowed
with the diagonal action of U,(g), has a unique component of type V4 (A+p). Hence
the restriction map provides a map ry , @ Vo(A)* @ Vg(p)* ~ (Vo(A) @ Vg(m)* —
V(A + p)*. Since Pt is a free abelian semigroup, one may assume that the vy are
normalised such that rx , (7 ® 1u) = Mg, A p € PT5 see [12, 9.1.10].

Set Rt := Drcp+ Vo(N)* @va. The space R™T can be equipped with a structure
of algebra by the multiplication rule: (£ ® vy).(§ @ vn) = TAn(§ ®E) @ vatn,
€€ V,(\", € € V(N
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Let j be the map R — Uy(b™)*, £ @ vy — &(?uy), € € V(N)*. The following
lemma is standard, we give a proof for completion.

Lemma 2.1. The map j is an embedding of algebras.

Proof. The map j is a morphism of vector spaces. Now, for A\, X in P, 5 in V (),
7' in Vy(XN), and b in Uy(b™):
J((n @) @ vx))(b) = raxn(n@n)(b.vata) = (n@n')(b.(vr @ V)
= n(bay-va)n (bay-va) = ((n @ va)-j(n" @ va))(b),

using the Sweedler notation. Hence, j is an algebra morphism.

Now, we prove that j is an embedding. Suppose that j(3_, nx ® vy,) = 0 for
a nonzero element » &Mk @ vy, In RT. One may assume that the )\, are distinct
in P and that n; is nonzero. Let v € V (A1) be such that n(v) # 0. Since
@D, Vo(Ar) is a semisimple U,(g)-module, the Jacobson density theorem asserts
that there exists an a in Uy(g) such that a.vy, = v and a.vy, = 0 for k£ # 1.

By the triangular decomposition, one may assume that a is in U,(b~). We have
JOk e ® va, ) (@) = mi(v) # 0. This yields a contradiction. O

Define the map
B2 Ug(b) = Uyg(b7)",  B(u)(v) = (u,v).

Then we have:

Theorem 2.2 ([7]). The map B is an injective antihomomorphism of algebras
which maps Ky to ny @ vy € RT C U,(b7)*. There exists a unique subspace Ey of
Uy(n) such that B(ExKy) = Vo(A)* @ vy.

3. RECOLLECTION ON CANONICAL BASES AND ADAPTED ALGEBRAS

The recollection on canonical bases is from [5]. Results on adapted algebras can
be found in [8] and [9].

3.1. The following theorem defines the canonical basis and its Lusztig parametri-
sation; see [20] Proposition 8.2].

Theorem 3.1 ([20]). Fiz i in R. For all t in ZY,, there exists a unique element
b= bi(t) in Uy(n~) such that b =b and b — Fi(t) € ¢~ Y. Z[qg |Fi(t'). The map
t+ bi(t) defines a bijection from Z% to a basis B of Uy(n™). The basis B does not
depend on the choice of i.

The basis B is called the canonical (or global) basis and the map b; : t — bi(t)
is the Lusztig parametrisation of B associated to the reduced expression i. We can
define the action of the Kashiwara operators on the canonical basis as follows: for
1 < i < n, there exists a unique injective map f; : B — B, such that for all i with
11 =1, we have B

Fi(bi(t1,ta, ... tN)) = bi(ty + 1, ta, ..., tN).
For 1 <i<mn,let & : B — BU{0} be such that é;(b) = b’ if there exists b’ such
that fi(b') = b and é(b) = 0 if not.

Let &;(b) =max{k, eF(b) # 0} and let £ : B — PT, b > e;(b)w;. Now, the
basis B is stable under o. For all X in P, set B(\) = {b € B, E(o(b)) < A\}.

A nice theorem of compatibility of the canonical basis with the Weyl modules
V4(A) can be stated as follows:



REALISATION OF LUSZTIG CONES 463

Theorem 3.2 ([13]). Fiz X in P*. Then, for b in B, we have b-vy # 0 if and only
if b€ B(X\). Moreover, B(\) - vy is a basis of Vg(N).

In the sequel, we will identify B(X) with its image in Vg (A).

3.2.  We now introduce the string parametrisation of the canonical basis and the
various transition maps.

Fix a reduced expression i in R and b in B. The string of b in the direction i is
the sequence of integers ¢;(b) := (t1,...,tn) defined recursively by

tr =€, (b), to = €4y (€11 (D), .., tw = iy (EN 1. €V (D))

The map ¢; defines a bijection from B onto the set of integral points of a rational
convex polyhedral cone Cj in RY.
We can now define

’

R = (by) toby : 28, — 78,

1

o/
R, =cyo (ci)f1 : Ci — Cy,
!

Ri = (bi/)_l [e) (Ci)_l N Ci — ZJZ\[O’

Ri_il = Cyj’ O bi : Z]>VO — Ci/.
3.3. Let B* C Uy(n) be the basis dual to B with respect to the form (, ) on
Ug(n) x Ug(n™). We call it the dual canonical basis. For b in B, we denote by b*
the corresponding element in B*. Since we work with the dual canonical basis, in
the sequel we shall regard b; as a map from Z%, to B* (rather than B), using the
identification b < b*. Similarly, we shall regard ¢; as a map from B* to ZY,,.

The set B* is stable under ¢ “up to a power of ¢”. To be more precise, for b in
B, there exists an integer m such that o(b*) = ¢™o(b)*.

For A in Pt and b in B(\), let m\(b)* be the element of V,(A)* such that
A (D)*(b'wy) = dppr, for all b € B(X), where ¢ is the Kronecker symbol. It is
easily seen from the definitions that:

Lemma 3.3. For all A in P and b in B(\), we have B(b*K)) = mx(b)* @ v.

In the notation, we will sometimes omit 7).

The lemma implies that the spaces E) defined by Theorem are compatible
with the dual canonical basis. By the Weyl character formula, for all w in W and
X in P, there is a unique element of B* N E) with weight A — wA. We denote this
element by by, , and the corresponding element in the canonical basis by by, x.

In the sequel, {mx(b)* ®@wvy, b € B(\), A € Pt} will be called dual canonical basis
of R*. By a misuse of language, its Lusztig, resp. string, parametrisation will be
the Lusztig, resp. string, parametrisation of the corresponding element b in B(\).

3.4. Two elements of the dual canonical basis are called multiplicative if their
product is an element of the dual canonical basis, up to a power of ¢. By [25], mul-
tiplicative elements g-commute. We start with the definition of adapted algebras.

Definition 3.4. A subalgebra A of Uy(n), resp. RT, is called adapted if

1) the intersection of A and the dual canonical basis is a basis of A, called
adapted basis,

2) the elements of this basis are pairwise multiplicative.
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We define standard adapted subalgebras of RT, associated to a fixed reduced
expression i for wo; see [g].

Set yx = nx ® vx. Let A; be the subalgebra of RT generated by vy; := yw,,
1<i<mn,andc = b:n---sik i, © Ve s 1 <k < N. (This notation is standard,
but shouldn’t be confused with ¢; which is used for the string parametrisation).
Using the antihomomorphism (3, we obtain from [8] the following proposition:

Proposition 3.5. Fizi € R. The algebra A; is an adapted subalgebra of RT and
the adapted basis is given by monomials in the y; and the ci, up to a power of q.

As o is an antiautomorphism which preserves the dual canonical basis up to a
power of ¢, we can now define another family of adapted algebras by twisting the
standard ones.

Note that o(bs,, . s, w,;, ) € B(pk), where py = E(l')sil___sik @i, ). Let A7 be the
subalgebra generated by the y;, 1 < i < n, and the ¢}7 := U(bsqzl---&:k @ik)* ® Uy
1 < k < N. These elements g-commute by 2.2 Moreover, by B3 and [8, 2.2], we
have

Proposition 3.6. Fizic R. Then,

(i) the algebra A is an adapted subalgebra of RT,
(ii) the adapted basis is given by monomials in the y; and the c}f, up to a power
of q,
(iii) the Lusztig parametrisation of y; is zero,
(iv) the Lusztig parametrisation of ci¥ is Y e; where l runs over {I < k, i = ij}.

3.5. In this section, we are concerned with the lowest weight vectors in R*. For
all X in P, set A* := —wpA. Let vy,x be the unique element of weight wp in the
canonical basis of V(). Then, zy 1= v}, \ ®vy is an element of the dual canonical
basis of RT. It is known (see [8]) that these elements belong to all of the standard
adapted algebras defined in the section above.

Lemma 3.7. The elements zx, A € P satisfy zxzy = 2a4pu, A\, p € PT.

Proof. Let b, b' be two elements of the canonical basis of Uy(n™), with b € B(A).
By [9, Proposition 3.1], we have b"*b* € g~ M) B*, where 1/ is the weight of b'*.

Applying this formula when b*, resp. b, is the element of B(\)*, resp. B(u)*,
of weight A + \*, resp. p + p*, and using Theorem [2.2] we obtain that

—(Nptp”) N )

ZuZx = (g q A = Extp-

This proves the lemma. O

In the sequel, we set z; = 2,.

4. THE SCHUTZENBERGER INVOLUTION

We can now define an involution ¢ of RT by twisting the dual Weyl modules
by the automorphism w. This involution generalises the Schiitzenberger involu-
tion ([28]), up to a diagram automorphism.
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4.1. Let M be a Uy(g)-module. With the help of the automorphism w, we define
a twisted U, (g)-module structure on M* via

z.{(m) = &(w(x)m), £ € M*, x € Uy(g), m € M.

Let M be the space M* endowed with this U,(g)-module structure.
Fix A in P*. Then, V,()\)% is a simple right module. By dualising [I8, Chap
XXIT], we obtain

Proposition 4.1. The module Vi (\)Y is isomorphic to Vy(A\*)*. There exists a
unique right Ugy(g)-module isomorphism ¢y which sends the dual canonical basis of
Va(N)E to the dual canonical basis of Vy(N\*)*. It sends highest weight vectors to

lowest weight vectors and conversely.
4.2. We define a map ¢ : RT — RT, such that

P(E ®vx) = dA(§) ®var, § € Vo(N)", A€ PT,
where ¢, is as above. Then

Proposition 4.2. The map ¢ is an involutive antiautomorphism of the algebra RT
which preserves the dual canonical basis of R .

Proof. Recall that w is involutive. So, by Proposition[4.1] ¢x-¢y is the identity and
this implies that ¢ is involutive.

Now, let R;\" be the A-component of R*, which is isomorphic to V,(\)* as a right
U,(g)-module. As noted in 24, w is a coalgebra antiautomorphism. Hence, the
map m:

m : Rf @ R} — RL_H, m(a®b) = ¢~ (¢(b)p(a))

is a morphism of right U, (g)-modules, where RY @ R} is endowed with the diagonal
action. Using Lemma [3.7] we obtain

m(y)\ @ yu) = ¢71(z>\+u) = Yr+p = Y\Ypu-

As dimHoqu(g)(R;\|r ® R;{,R;\"Jm) = 1, this proves that m is the multiplication
of RT and thus that ¢ is an algebra antiautomorphism. The last assertion of the

proposition is clear by Proposition [Tl O

Corollary 4.3. Fiz a reduced expression i in R. Then, ¢(A7) is an adapted sub-
algebra of RT.

The aim of the remaining sections is to prove that the Lusztig cone L; is the
i-string parametrisation of the adapted basis of ¢(A{). We note that this is given
by monomials in the z; and the ¢(ci) up to a power of g.

5. GEOMETRIC LIFTING AND PARAMETRISATION

We fix a dominant weight A. In this section, we study the geometric lifting of
the morphism ¢,. By using results of [5], we obtain an explicit formula for the
morphism b;l@\c;l which gives the Lusztig parametrisation ¢ = (¢,--- ,t}y) of
the element ¢y (b) in terms of the string ¢t = (¢1,--- ,tn) of b, where b is in the dual
canonical basis of R™.
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5.1. We give here notation and recollection of [5]. Let G be the semisimple simply
connected complex Lie group with Lie algebra g. For all i, 1 < i < n, we denote
by ¢; : SLy — G the canonical embedding corresponding to the simple root «;.
Consider the one-parameter subgroups of G defined by

1 t 1 0
x’b(t)_sol(o 1>7 yz(t)_%(t 1>7 te(cv

taiv_goi(é t91>, teC.

The x;(t), (resp. y;(t), t"y) generate subgroups N, (resp. N—, H). We have the
following commutation relations:

and

(5.1) 19 () = ay ()7 4y (1) = gy (e

We define two involutive antiautomorphisms of G, x — 27 and = — z*, by
zi(t)" =yi(), w()" =@i(0), ()T =1,
() = @(t), w) =yilt), () =t

The first one is called transposition and the second one is called inversion.

Let Gy := N™HN be the set of elements in G which have a (unique) gaussian
decomposition; we write © = [z]_[z]o[z]+ for the gaussian decomposition of = in
Go.

For all reduced expressions i = (i,...,ix) and all N-tuples t = (t1,...,ty) in
CN, we set:

—a a)
zi(t) ==z (01) @iy (En), and 2i(8) == yi, (Bt 7y )ty Y
The z; and the x_; parametrise subvarieties of G.

Theorem 5.1 ([5]). There exists a subvariety of G, LSg°, resp. LYY, such that

y : S N e,wo wo,e
for alli in R, the map x;, resp. x_j, is a bijection from RSy to L"), resp. Lig”.

We denote by R:’ = :ci_,l o x; and R:;l = :C:il, o x_; the transition maps. A
remarkable result of [b] asserts that R:' (respectively, Rj/) is a geometric lifting

), which was defined in the first section. Let’s be

s/
—i
—i

of the map R%I (respectively, R
more precise.

By using results on semifields (see [3]), the authors define the so-called tropicali-
sation, denoted by [.]7rop. The map [Jrrop is from the semifield Qs (t1,...,tn) to
the set of maps ZV — Z. The elements of Q¢(t1, ..., ty) are called subtraction-free
rational erpressions in the tq1,...,ty. Tropicalising a subtraction-free expression
means replacing the multiplication by the operation a ® b := a + b and the sum by
the operation a @ b = min(a, b). We give an example from [3].

Example 5.2. Let z, y be two indeterminates and set f = 22 — zy + y%. Then,

3 3
f is a subtraction-free expression because f = xxiz . We have [f]rrop : 2 — Z,
with

[f1Trop(m,n) = Min(3m, 3n) — Min(m,n) = Min(2m, 2n).
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A geometric lifting is an element of the inverse image of this map. We can see
in the example above that it is in general not unique.

The following theorem is a result of [5]. Recall that the Langlands dual of G is
the semisimple Lie group GV corresponding to the transpose Cartan matrix A”.
We can identify the simple roots (resp. coroots) of G¥ with the simple coroots
(resp. roots) of G. The Weyl groups are naturally identified. In the theorem, the
notation (.)¥ means that we consider the applications defined in the same way but
for GV, and the notation [.]7,.p is the componentwise tropicalisation.

~ s

Theorem 5.3. Fiz two reduced expressions i, i’ in R. Then (R?)V, resp. (RZ;)Y,

is a geometric lifting of Rg/, resp. Rj/:
(@) (B O)rrop = R (1), (i) [(RZ])Y (D]1rop = R7{ (1)
5.2. Let ¢: LYy — LG be the map defined by
((z) =[]+
By Bl we obtain that the map ( is well defined and

Proposition 5.4. Leti= (i1, - ,in) be a reduced expression for wy, and suppose
(th, -, thy) = (ml_l oCox_j)(t1, -+ ,tn), t; € C. Then, we have
—1 *ai“i
to=t"1]t; """
i>k
The following theorem and its corollary are a result of [23] but we give here a

sketch of the proof. The description of the geometric lifting of ¢ can be given in
terms of parametrisations:

Theorem 5.5. Fiz two reduced expressions i, i’ in R. Then, (v; ' o ox_y)V(t)
is a subtraction-free expression and

bt oaey (1) = (a7 o Comir) " ()] Trop + b Or(1)-
Set (I1,---,In) = bi_ld))\ (nx). We obtain the following tropicalised formula:
Corollary 5.6. For (th,--- %) = b 'éac; " (t1, -+, tn),
tho=ln—th— Y ait;
J>k
Remark 5.7. Tt is remarkable that this formula is affine. This is only true in the

case i = i’. In general, the tropical term in the right-hand side of Theorem [5.5] is
piecewise linear.

Sketch of the proof. By Proposition[5.4], (x
sion. The first assertion of the theorem is obtained by composing with R:,
Let ¢i i : Civ — Z~ be a family of maps labelled by two reduced expressions i

and i’ such that the three following conditions are satisfied:

(1) é(0,--+,0) = b dalm),

(2) iy = Rl o iy = ¢ign o RTY

(3) for ¢si(te, - ,tn) = (th,--- ,ty), t1 +t1 and t}, k # 1, depend only on

o, -, tN.

;' oCox_;) is a subtraction-free expres-
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The theorem follows from the proposition:
Proposition 5.8. [23] We have,
(i) (¢ui) is a family satisfying (1), (2), (3) if and only if
Giy = by 'oacy
(ii) The family (¢34) defined by
G (1) = [(a7 ! 0 Coxir)V (D))rrop + by ' oA (1)
satisfies the conditions (1), (2), (3).

6. FrRoM THE PBW-PARAMETRISATION TO THE STRING PARAMETRISATION

Let i = (i1, - ,in) be a reduced expression for wy. Our aim in this section is
to describe the map u +— c¢;¢rbi(u), using Proposition B4l and Theorem BEA.
Let S be the complex rational map extending
(t1,to, ... tn) — (u1,ug,...,uy) = (1:1_1 oCox_i)V(t1,ta, ..., tN).
Then Theorem 5.1 states that S(t) is a subtraction-free expression and that
by toney () = [S()]rrop + b7 da ().
Proposition Bl gives an explicit expression for S(¢) (although note that we need to

take the expression for the dual root system by the definition of S).
Moreover, S is clearly birational. We first explain how to invert S.

Lemma 6.1. Let (u1,uz,...,uy)€ECN. Then S (uy, ua,...,un)=(t1,t2,...,tn)
€ CVN, where, for 1 <k < N, we have
(61) te = u};l Hu;Srk+1 Sij_q Qi & k>

>k
Proof. We note that, by Proposition 5.4, if (t1,ts,...,tx) €CN and S(t1,ta, ..., tN)
= (u1,ug,...,uy) € CV, then, for 1 <k < N, we have

-1 Qg
(6.2) we =t []t;""7
i>k
Since this map is a monomial transformation of C¥, it is sufficient to show that
substituting the expression ([G.2) for uy in terms of the ¢; into the right-hand side
of equation (B]) reduces to the left-hand side. Noting that
<5ik+1 T Si o Qg Oé,\/k> = <aij ySijq 5ik+1a’\i/k>7
we obtain
-1 (ij si;_ysip g @)
—1 —Qi, i —1 —Qi;,i
<tk I l) I I
1>k >k I>j

It is clear that the exponent of ¢; in this expression is 1, and that, if [ < k, then
the exponent of t; is zero. So we consider the case where [ > k. The exponent of t;
is given by

\ \
Qi i + g —Qi; i, <aij y S 7" 'Sik+1aik> - <ail ySip_q 5ik+1aik>'
>35>k
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Since s, () = @, — ai; 4, v;, this is equal to

<aiz, ) O‘xc> + Z <SlJ (ail)v Sij_q 7 Sik+1afxc> - <ail ySij_q Sik+1afxc>
>35>k

<aiz ySip_q Sik+10‘xc>'

The sum telescopes to give

<aizaaivk> + <O‘i175i171 o 'Sik+1a’\£/k> - <aizaaivk> - <O‘i175i171 o 'Sik+1a;/k> =0,

and we are done. O
Proposition 6.2. Fiz a reduced expression i for wg, and let u = (u1,us,...,un) €
ZY,. Then

cipabi(u) = (™) (w)]Trop + cia(nr),

where S™1(u) is as in Lemma [G].
Proof. By Theorem (.0, we have that
(6.3) by tone; H(t) = [S(E)]irop + b ' a(mr)-
It follows that
cipa-bi(u) = [STH(u — by oA (1)) 7rop,

noting that ¢y«¢y is the identity map. We note that S is an invertible monomial
map, so its tropicalisation is linear. Hence

cipa-bi(u) = [S_l(u)]Tmp - [S_l(b;1¢k(77k))]Trop-
Substituting ¢ = cig- (nr+) into (6.3), we obtain
0= bi_lm* = [S(cipa- (UA*))]TTOP + bi_1¢)\(77>\)~
Hence
[Sil(bi_lqu(nA))]Tmp = —cidr (Ma+)-
Hence we have
ciga-bi(u) = [S™H (W) Trop + cidor- (1r-),

giving the required result (since A — A\* is an involution). O

We can compute the constant term in this formula as follows:

Lemma 6.3. Leti be a reduced expression for wg. Then ci(pany)=(vi,ve,...,vN),
where, for 1 <k < N, we have

Vg = (Sip_, ~si1)\,a;/k>.

Proof. This follows from [I8, 28.1.4], since we are computing the string of the lowest
weight vector in Vg (A*)*. O

We remark that ¢x(ny) = zx=, so this lemma is computing the string c;zy-.
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7. THE STRING PARAMETRISATION OF A TWISTED
STANDARD ADAPTED SUBALGEBRA

Recall (see Corollary E23) that the monomials in the elements z1, 29, ..., 2z, and
the elements gf)(c}f), k=1,2,...,N, form an adapted basis for the twisted standard
adapted subalgebra ¢pA¢ of RT. Our aim is to compute the string parameters of
these elements. We therefore use Proposition [6.2] to apply the map c;j¢,, bi to the
element b, 1(0};’), for each 1 < k < N; see[3.4l These last vectors were described in
Proposition B.6(iv).

7.1.  For convenience, we define a matrix V' with columns given by these vectors.

Definition 7.1. Let My(Z) denote the ring of N x N matrices with integer entries.
Let V = (Vi) € Mn(Z) be defined by

1 <k ifi =iy,
Vik = { 0 otherwise.

Let vj, denote the kth column of V; this is b; *(ci”) by Proposition BBliv).

7.2.  In order to apply Proposition[E.21to compute c;¢,,, bi(vy), foreach 1 < k < N,
we first need to apply (S71)7rop to vi.
By Lemma [6.1], we have that (S™1)7op(u1,us, ..., un) = (t1,t2,...,tx), where

_ v
t, = —up-+ E (Sipgr = Sij_y Qg s O VU
>k

N
= > Tiyuj,
=1

where T' = (T}jj) is the matrix defining the linear map (S71)7y.0p. We have

Tjk = <57;j+1 .- 'Sikilaik,a¥> 7 < k,
0 otherwise.

We note that T is the inverse of the matrix S defining the linear map Stop.
Definition 7.2. Let C = (Cji) € My(Z) be the matrix given by
Cjk: { <5ij+1"'8’ikwik7a;/j> ] Sk7

0 otherwise.
We have:
Lemma 7.3. Let S,V and C be the matrices defined above. Then we have SV =
—C.

Proof. We have that (S7'V); = Ejgkgz T, Vi, and is zero if j > [. If j <1, then,
using that (, ) is W-invariant,
(7.1) STV =TyVie+ > {sicy o siaal, o).

J<k<l,ip=1
Note that T;;Vj; = —d;, 4. Now, by calculating explicitly the coefficient of o in
Siy e Sq a;/j, we find that it is equal to the right-hand side of [Tl Hence,

(S_lv)jl = (@i Sy - "Sijaivj> = _<Sij+1 ’ ..Silwil7a7\;§'>7
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which is equal to —CY; as required. O
We have the following corollary:
Corollary 7.4. The entries of C' are nonnegative.

Proof. In proof of Lemma [3] we noted that C]l is equal to the negative of the

coefficient of a in the negative coroot s, - - - sy, aij. g

7.3. 'We now would like to compute c¢;j¢,, bi(vi) for each k (note that the vy are
the columns of V). In the following lemma we set g/(cl) = El(bSil...Sik,W¢k) by a
misuse of notation.

Lemma 7.5. For 1 <I<n and1l <k <N, we have

() = (80, sp @i o)) if (siy s, ) <0,
% 0 otherwise.

In particular,
v
M = > —(8iy 80, Wiy, o )1

1<1<n, (siy 51y @iy, ) ) <O

Proof. This follows from the definition of the ¢}, and [I8, 28.1.4] (and sly-representa-
tion theory). O

Let ci be the kth column of C = =SV, and let py = ¢i(¢u, M, ). Let P be
the matrix with columns pg, k =1,2,..., N.

Lemma 7.6. For1 <k < N, we have
CiPu, bi(Vi) = —ck + Px.
In particular, the entries of —C + P are nonnegative.
Proof. This follows immediately from Proposition [6.2] and Lemma [73] O
As a consequence, we have:

Proposition 7.7. Let i be any reduced expression for wg. Then c;ip(AJ) coincides
with the nonnegative integer span of the columns of —C + P and the strings ci(z;),
1 <4 <n.

Proof. By Proposition[3.6] c;¢(A{) is the nonnegative integer span of the ¢;¢,,, bi(vy)
together with the strings ¢i(z;), 1 <4 < n. Since ¢;(b*0™*) = ¢;(b*) + ci(b'™*) when
the elements b* and b of the dual canonical basis are multiplicative [4, Cor. 3.3],
the proposition follows from Lemma and Corollary B3] O

7.4. We also note the following formula for the entries of P:

Lemma 7.8. For 1< j, k< N, we have

P = > (505 0 Vi - 71,0

1<I<n,(siy -84, @iy, ) <0

Proof. By definition Pji is the jth entry of ¢;(¢,, 7., ). Hence, the lemma results
from Lemma and Lemma O
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7.5.  We will next show that some of the columns of —C'+ P are entirely zero, and
therefore can be neglected in Proposition [T.71

Definition 7.9. Given k € {1,2,...,N}, we set k(1) = min{j : j > k,i; = s},
i.e., the first occurrence of iy to the right of ix in i. If there is no such occurrence,
we set k(1) = N + 1.

Lemma 7.10. Suppose that k(1) = N + 1. Then, for j = 1,2,...,N, we have
Pji, = Cji, i.e., the kth column of P coincides with the kth column of C.
Proof. We have

C'k: <Sij+1 "'Sikw’ik)a;;> J Sk7

J 0 j>k.
Since k(1) = N + 1, we have
Cjk - <5ij+1 T Si}vwikaa;/j%

(in either case). By LemmalT3,

— \%
e = E _<Si1 T 8, Wiy QY >wl
1<I<n,(siq 83y, @iy 0" ) <0

= Z — (s -+ Sinikalv>wl

1<ISn,(siq w80 Wiy, ) ) <O

= > —(wowi,, ' )wy
1<I<n, (wowy,, ,") <0
= —WoWy,-
Hence, by Lemma[6.3]
ij = _<5ij—1 "'Silwowikaa¥>
= (s, Sin Ty a).)
<Sij+1 T Siwwima;/j>
= Cjk.
O

7.6. We replace the zero columns in —C' + P with vectors which we will see are
the strings of the elements z1, 2o, . .., z,, in order to obtain a matrix whose nonneg-
ative integer span is the set of string parameters of the twisted standard adapted
subalgebra of RT corresponding to i. We call this matrix X:

Definition 7.11. Let X = (X;;) € Mn(Z) be the matrix defined as follows:
Xjk = { <Sij—1 ’ "Silwikaav>a k(l) =N+1,

2
—Cj + Pjk, otherwise.
We note that the Pj; are given by Lemma [7.8 and that the Cj, are given in
Definition Also, it follows from Lemma B3] that if k(1) = N + 1, then the kth

column of X is the string CiZewy -
We have:

Proposition 7.12. Let i be any reduced expression for wg. Then ci¢p(A7) coincides
with the nonnegative integer span of the columns of X. In particular, the entries
of X are nonnegative.
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Proof. We note that the matrix X is the same as —C'+ P, except that if 1 < k < N
and k(1) = N + 1, then the kth column (which is zero by Lemma [[.T0) is replaced
by the string of ey - The result now follows from Proposition [.7. O

8. LUSZTIG CONES AND TWISTED STANDARD ADAPTED SUBALGEBRAS

In this section, we will show that the cone of string parameters of ¢;p(A{), given
by the nonnegative integer span of the columns of X, coincides with the Lusztig
cone corresponding to i. At the same time we will show that the Lusztig cones are
simplicial.

8.1. First we define a matrix L whose rows include the defining inequalities of
the Lusztig cone corresponding to i as a subset of NV. This matrix will later be
modified to a matrix defining the Lusztig cone as a subset of Z".

Definition 8.1. Let L € My(Z) be the matrix defined by

N -1  k=jork=j(1),
Ljx =14 —ai, J<k<j),
0 otherwise.

Remark 8.2. Let T; denote the jth row of L. The defining inequalities of the Lusztig
cone L; (as a subset of Z]ZVO) are those inequalities of the form T; - ¢ > 0 for those
j such that j(1) < N.

8.2.  We will next show how this matrix is related to the matrices S and V already
considered, i.e., that V18 = L. This will have the consequence that LSV = 1,
in particular, showing that the columns of S~™!'V satisfy the defining inequalities of
the Lusztig cone corresponding to i. We recall from Proposition B4l that Spyep is
defined by the matrix S = (S;i) € Mn(Z) where

-1 ] = k?
Sik =1 —i., j<k,
0 otherwise.

We next need to compute the inverse of the matrix V.

Lemma 8.3. Let W = (W) € Mn(Z) be the matriz defined as follows:

1 Jj=k,
Wir=1¢ =1 j<kk=j(),
0 otherwise.

Then W = VL.

Proof. We show that WV = I, the identity matrix. The j,l-entry of WV is given
by Z; = Zszl Wk Vii. For this to be nonzero, we must have j <k <land k=
or k = j(1). There are 5 cases:
(a): If I < 4, then clearly Z; = 0.
Case (b) Ifl= j, then Zjl = Z]‘j = Wjj‘/jj =1-1=1.

(c): If j <1< j(1), then Zj; = W;;Vy=1-0=0.
Case (d): If I = j(1), then Z;; = WiiViiay+ Wi Vi) = 1-14+(-1)-1=0.

): Ifl > j(l), then Zj =W Vi + Wj,j(l)vj(l),l =V - Vj(l),l = 0 since

Vit = Via),- 0
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Lemma 8.4. Let V.S and L be the matrices as defined above. Then V18 = L.

Proof. The j,l-entry of V=15 is given by Y = Zszl Wk Ski. To be nonzero, we
must have j <k <l and k = j or k = j(1). As before, we have the 5 cases:

Case (a): If I < j, then clearly Yj; = 0.

Case (b) Ifl = j, then Y}‘l = Y}'j = Wjijj =1- (—1) =—1.

Case (c): If j <1< j(1), then Yj; = WS = Sji = —ay, -

Case (d): I 1 = j(1), then Yii = Yj 0y = WyiSj50) + Wji0)Si).50) = 1+
(=2)+ (=1 (-1) =-1.

Case (c): If I > j(1), then Yy = Wj;Si + WiySiya = Sip — Sjya =
— Qi Qigy 0 = Gy +a;;5, =0.

We see that Y;; = Lj; in every case. O

8.3. We now define a slightly altered version of the matrix E, whose rows will
eventually be seen as the defining inequalities of the Lusztig cone as a subset of
ZN. We will also see that this matrix is the inverse of the matrix X.

Definition 8.5. Let L = (L;i) € Mn(Z) be the matrix defined as follows:

-1 k=jork=j(1),
L'k: _aij,ik j<k<](]‘))
! 1 .7(1) =N+ 17 Siy Sig * 1 Sy (a’ik) = Oy,
0 otherwise.

First, we show how some rows of L are related to the strings of lowest weight
vectors:
Lemma 8.6. Let

v = ci(dann) = (v1,v2,...,UN),
as in Lemma [E23. Suppose that 1 < j < j(1) < N. Let r; be the jth row of L.
Then we have rj - v = 0.
Proof. Recall that for k =1,2,..., N, we have
vk: = <sik_1 e Si1>\7 a7\,/k>7

by Lemma [63] We have

rj-v = =V = VUjy — E Qi iy, Vk
J<k<j)
= . .. . v J— - DY . \/ R . . - .. . \/
- _<S'Lj—1 Siy A7aij> <51]'(1)71 S’LlA’aij> E Qg iy, <57/k—1 SllAaaik>'
J<k<j(1)
We note that
VY oV VALY VY
Siy, (aij) = Qg = <alkaaij>aik = QG T G Qs
SO
= . ... . v — - .. . v
rj-v = _<S'Lj—1 iy A, aij> <51]'(1)71 Siy A, aij>
E \Y \Y
+ <sik_1 o .Si1>\7sik (a’LJ) - a’ij>
J<k<j(1)
f— . DRI . V —_ . .. . V
- _<Slj71 Siy Avaij> <S'Lj(1)—l sl1>‘vaij>
Y Vi
F(Sis00y 1 S A o) — (8 s A ) =0,

the sum telescoping. O
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Next, we show that some entries of —C' + P = S~V + P are zero:
Lemma 8.7. Suppose that 1 < j < N and that s, si, '~sij71(a2/j) =a) is a
simple coroot. Then

ij = Cjk.
Proof. We note that, by Lemma [8]

P = _<Si1 : "Sikwikaarv’> <5i1 : '.Sikwik7a’l\"/> <0,
J 0 (Siy * 8i, @iy, ) ) > 0,

using the fact that (w;, /) = ;. Suppose first that j < k. Then:
(Siy 80, @i, ) = (Sijpr + Siu Wi, Siy * - Siy )
= (Sijy sikwik,sijayj>
= (siys ST OY)
= —Cjr <0,
by Corollary [L4l. So Pj, = Cj. If j > k, then
{84y 8, @i, ) =
= <5ij,1 e Sip Wiy Siy_y Sy Sig Si1a¥>
(

\%
Sijq 5ik+1wikaaij>

\Y
Wiy, Sig, "Silar>

— v
- <wikvsik+1 T Sij—laij> >0,
since si,,, =+ 8i;,, @, is a positive coroot. It follows that Pj, =0 = Cjy. O

Remark 8.8. We note that the condition

siy o si (o) = o
is equivalent to the condition

Siy - Sq () = Qg

Second, this result shows that (S7'V + P)jp = 0 under this assumption, by
Lemma [T3]

8.4. We can now prove the following, as we have all the pieces we need:

Proposition 8.9. Let L and X be the matrices defined as above, so that the non-
negative integer span of the columns of X is the cone of the string parameters of the
twisted standard adapted subalgebra corresponding to i. Then LX = I, the identity
matriz.

Proof. Denote by x; the kth column of X. Suppose first that 1 < j < j(1) < N,
and that 1 <k < k(1) < N. Then r; (the jth row of L) is the same as the jth row
of L. By Lemma 84, LS~V = I. Hence rj - (—cg) = 6k, since —cy is the kth
column of S™'V. By Lemma B8], r; - px = 0 (where py, is the kth column of P). It
follows (from the definition of X) that r; - x = d;.

If1<j<j(1) <N and k(1) = N + 1, then x;, = Cizg, - By Lemma Rd, we
have that r; - x5 = 0 (as required, noting that we must have j # k).

If j(1) = N +1, then let 1 <[ < N be defined by s;, ---5;,_, a5 = ;. Then
Lj; =1 is the only nonzero entry in r;. It follows that r;.x; = Xjy.

Case (a): Suppose that k(1) < N. Then X;;, = —Cj, + P, = 0 by Lemma 871
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Case (b): Suppose that k(1) = N + 1. Then

Xie = |
= <wlk7811' 'siz—la;Q
(@i s >

= 517/?’

\%
Sip_q t 8iy Wiy, O >

as required (noting that j(1) = k(1) = N +1).
The proposition is proved. (|

If c = (c1,¢2,...,cn) € ZN, we write ¢ > 0 to denote ¢, > 0 for k=1,2,...
We have the following consequences.

Theorem 8.10. The Lusztig cone L is simplicial, defined by the matriz L:
Li={ceZ" : Lc>0}.

It coincides with the nonnegative integer span of the columns of the matriz X (see

Definition [T.11)).

Proof. By Proposition[Z.12] the entries of X are nonnegative. By Proposition B3]
XL = I, so nonnegative integer combinations of the rows of L are of the form
(0,0,...,0,1,0,...,0) (with a 1 in the kth position) and therefore correspond to
inequalities of the form ¢, > 0. So

{ceZN : Lc>0} C NV,

Since the inequalities corresponding to rows of L are either defining inequalities of
L; or inequalities of the form ¢, > 0, the claimed equality follows, and it is then
immediate that £; is spanned by the columns of L= = X. O

Remark 8.11. The fact that £; is simplicial was already known for quiver-compatible
reduced expressions for wy for g simply laced [I] and for all reduced expressions for
wyp in type A, [22].

And we have:
Theorem 8.12. Let i be any reduced expression for wg. Let L; denote the Lusztig

cone corresponding to i. Let ¢(A{) denote the twisted standard adapted subalgebra
corresponding to i. Then

ci(¢(A7)) = Li.

Proof. This follows from Proposition and Theorem B.10l O
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Example 8.13. Suppose that g = sl4(C) (type As). Let i = (2,3,2,1,2,3), a
reduced expression for wg. Then we have

101 010 -1 -1 1 0 -1 1
01 0001 0 -1 -1 -1 0 1
00 1 010 0 0 -1 -1 1 0
V=looo0100l" Tl 0o 0 0o -1 -1 -1 |
000010 0o 0 0 0 -1 -1
000001 o 0 0 0 0 -1
1100 1 0 110010
011110 111110
001100 001100
C__TV_000111’P_111111
000011 1100 1 1
000001 00 0001

The matrix X of spanning vectors of the Lusztig cone corresponding to i and the
defining matrix L are given by:

0 000 1O -1 1 -1 0 0 0

1 0 0 0 1 1 o -1 1 0 1 -1

B 0 000 01 w1 0 0O -1 1 -1 0

X = 1 1 1 1 1 1 , L=X""= 0 0 0 0 O 1

1 1. 01 1 0 1 0 0 0 O 0

0 001 0O 0 0 1 0 0 0
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