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ABSTRACT
We associate a formal power series with integer coefficients to a positive real number, we inter-
pret this series as a “q-analogue of a real.” The construction is based on the notion of q-deformed
rational number introduced in arXiv:1812.00170. Extending the construction to negative real num-
bers, we obtain certain Laurent series.
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1. Introduction

We take a new and experimental route to introduce a certain
version of “q-deformed real numbers,” extending q-deforma-
tions of rationals introduced in [Morier-Genoud & Ovsienko
18]. Given a real number x � 0, we will construct a formal
power series with integer coefficients associated with x. There
is no explicit formula to determine the coefficients of this ser-
ies, but there is an algorithm to calculate them.

Our construction is completely different from the classic-
ally known q-deformations of a number x 2 R, defined by
the formulas qx�1

q�1 (or qx�q�x

q�q�1 ) that do not give power series
with integer coefficients. The only case where our construc-
tion coincides with the classical one is that of integers.
Throughout this paper, we always use the Gauss definition:

½a�q ¼
qa � 1
q� 1

, a 2 Z,

that gives the familiar polynomials ½a�q ¼ 1þ qþ � � � þ qa�1

and ½�a�q ¼ �q�1 � q�2 � � � � � q�a, for a 2 N: All our
constructions will be in accordance with these formulas.

It is of course too early to discuss possible applications of
the q-deformed real numbers, since we do not know suffi-
ciently general properties of the power series we obtain.
However, the existence of the procedure is quite surprising
and the examples are captivating.

The q-deformation of a rational number r
s is a quotient of

two polynomials:
r
s

� �
q

¼ RðqÞ
SðqÞ ,

where R and S both depend on r and s (see [Morier-Genoud
& Ovsienko 18]). In this paper, we represent these rational func-
tions as Taylor series at q¼ 0.

The definition of q-reals is as follows. Let first x � 1 be an
irrational number, and ðxnÞn�1 any sequence of rational

numbers that converges to x. We q-deform the sequence
ðxnÞn�1 to obtain a sequence of rational functions:
½x1�q, ½x2�q, ½x3�q, ::: For every n � 1, we consider the Taylor
expansion of the rational function ½xn�q at q¼ 0:

½xn�q ¼:
X
k�0

Kn, k qk: (1–1)

Abusing the notation, we use the same name, ½xn�q, for
the Taylor series. The q-deformation of x is the series

½x�q :¼
X
k�0

Kk qk, where Kk ¼ lim
n!1Kn, k: (1–2)

The existence of the limit and its independence of the
choice of the converging sequence ðxnÞn�1 is guaranteed by
the following theorem.

Theorem 1. Given an irrational real number x � 1, for every
k � 0 the coefficients Kn, k of the Taylor series (1–1) stabilize
as n grows. Moreover, the limit coefficients Kk in (1–2) are
integers that do not depend on the choice of the converging
sequence of rationals ðxnÞn�1:

This statement was first observed by computer experimenta-
tion, but then a simple proof was found. Note that the coeffi-
cients of the polynomials in the numerator and denominator
of the sequence of rational functions ½xn�q do not stabilize.
They grow with n infinitely at every fixed power of q.

In practice, we always construct q-deformed real numbers
using continued fractions. Let x � 1 be a real number, and
x ¼ ½a1, a2, a3, :::�, where ai’s are positive integers, its contin-
ued fraction expansion. The sequence of rational numbers

xn :¼ ½a1, :::, an�
approximates x; it is called the sequence of convergents. In
this case the stabilization phenomenon of Theorem 1 can be
controlled with a greater exactness.
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Proposition 1.1. Let x � 1 be an irrational real number.
The Taylor expansions at q¼ 0 of two consecutive q-deformed
convergents of the continued fraction of x, namely of xn�1 ¼
½a1, :::, an�1� and xn ¼ ½a1, :::, an�, have the first a1 þ � � � þ
an � 1 terms identical, the coefficients of qa1þ���þan�1 differ
by 1.

With the help of a computer program, we carried out a
number of tests calculating q-deformations of known math-
ematical constants, from the simplest golden ratio to the
transcendental e and p, and checking their properties. The
most pleasant surprise for us was the appearance of the
sequence of generalized Catalan numbers (sequence
A004148 of [OEIS]) as coefficients Kk of the deformed
golden ratio. This remarkable “coincidence” and known
properties of A004148 allowed us to conjecture (and eventu-
ally prove) several properties of quadratic irrationals.

We know only very few general properties of q-deformed
real numbers. One of them is the action of the translation
group Z described by following formula

½xþ 1�q ¼ q½x�q þ 1, ½x� 1�q :¼
½x�q � 1

q
: (1–3)

Note that the second equation in (1–3) allows us to
extend our q-deformations to the case x< 1 (including nega-
tive real numbers); the notation “:¼” means that we use this
equation as definition.

The property (1–3) implies the following “gap theorem”.

Theorem 2. If k � x � kþ 1, where k 2 Z>0, then the k-th
order coefficient of the series ½x�q vanishes, while all the pre-
ceding coefficients are equal to 1:

½x�q ¼ 1þ qþ q2 þ � � � þ qk�1 þ Kkþ1 qkþ1 þ Kkþ2 qkþ2 þ � � �

Theorem 2 implies that for negative x we obtain Laurent
series instead of power series. More precisely, if �k � x <
1� k, where k 2 Z>0, then ½x�q is of the following general
form

½x�q ¼ �q�k þ K1�k q1�k þ K2�k q2�k þ � � � (1–4)

where Ki 2 Z:
Let us sum up our understanding of q-deformation, or

“quantization”, of real numbers in comparison with integers
and rationals. This quantization transforms integers into
polynomials, rationals into rational fractions, and real num-
bers into power series, in each case with integer coefficients:

½ : �q :

Z�1 ! Z�0 q½ �,
Q�0 ! Z�0ðqÞ,
R�0 ! Z q½ �½ �,
R ! Z q½ �½ � q�1

� �
:

8>>>><>>>>:
In the case of integers and rationals, the resulting polyno-

mials and rational functions are with positive coefficients. In
the case of real numbers, this positivity consists in the fact
that the power series are obtained as limit of rationals func-
tions with positive integer coefficients.

The paper is organized as follows.

In Section 2 we briefly recall the notion of q-rational. We
start with the most elementary, recurrent way to calculate q-
rationals, and then give two equivalent and more explicit
formulas. The first one uses the continued fractions and the
second 2� 2 matrices. The reader can find several other
equivalent definitions in [Morier-Genoud & Ovsienko 18].

In Section 3 we prove Theorem 1 and Proposition 1.1.
In Section 4 we use a computer program to investigate

several examples of q-deformed quadratic irrational num-
bers. We start with the golden ratio and continue with the
“silver ratio” and several examples of square roots, giving in
each case an explicit formula of the q-deformation.

In Section 5 we consider two examples of transcendental
irrationals, namely e and p. We calculate the first terms of
their q-deformations trying to make some observations.

In Section 6 we discuss the action of the translation
group and prove Theorem 2.

It would be interesting to investigate more concrete examples.
Note that we searched in vain for some functional equations
similar to those of q-deformed quadratic irrational numbers in
the case of higher order algebraic numbers, such as

ffiffiffi
23

p
:

2. q-Deformed rationals

In this section, we try to give a transparent and self-contained
exposition of the notion of q-rational introduced in [Morier-
Genoud & Ovsienko 18]. We outline an analogy with q-
binomial coefficients, and give a recurrent way to compute
q-rationals from the Farey graph. Finally we give two explicit
formulas for the q-rationals using continued fraction expan-
sions and the matrix form.

2.1. Analogy with the q-binomials

Recall that the classical Gaussian q-binomial coefficients (see
[Stanley 12]) are polynomials in q that can be calculated
recurrently via the formula

r
s

� �
q

¼ r � 1
s� 1

� �
q

þ qs
r � 1
s

� �
q

: (2–1)

The q-binomial coefficients are the vertices of the
“weighted Pascal triangle” which encodes the above formula:

The idea behind the definition of q-rationals is to use
exactly the same rule, but replace the Pascal triangle by the
Farey graph.

2 S. MORIER-GENOUD AND V. OVSIENKO



2.2. The weighted Farey graph

The structure of the Farey graph is as follows (see [Hardy &
Wright 08]). The set of vertices consists of rational numbersQ,
completed by1 :¼ 1

0 : Two rationals, rs and
r0
s0 (always written as

irreducible fractions), are connected by an edge if and only if
rs0 � r0s ¼ 61: Edges of the Farey graph are often represented
as (non-crossing) geodesics of the hyperbolic plane.

Although the Farey graph is much more complicated
than the Pascal triangle, in particular every vertex r

s has
infinitely many neighbors, these two graphs have one prop-
erty in common: each vertex has two “parents”. In the Farey
graph these “parents” are characterized as follows. Among
the infinite set of neighbors of r

s there are exactly two, r0
s0 and

r00
s00 , that are also connected to each other. In other words,
every rational r

s belongs to exactly one triangle

such that r0
s0 <

r
s <

r00
s00 : Furthermore, one has r

s ¼ r0þr00
s0þs00 :

Similarly to the case of q-binomials, the edges of the
weighted Farey graph are labeled by powers of q according
to the following pattern

The vertices are labeled by the following rule: if r0
s0

h i
q
¼ R0

S0

and r00
s00

h i
q
¼ R00

S00 , then

r
s

� �
q

:¼ R0 þ q‘R00

S0 þ q‘S00 : (2–2)

Note that (2–2) is analogous to (2–1).

The weights q‘ and the q-rationals can be calculated
recursively along the Farey graph; see Figure 1.

For instance, 7
5

� �
q
¼ 1þqþ2q2þ2q3þq4

1þqþ2q2þq3 : We will be interested
by the corresponding Taylor series at q¼ 0. For instance, for
the above example the series starts as follows

7
5

� �
q
¼ 1þ q3 � 2q5 þ q6 þ 3q7 � 3q8 � 4q9 þ 7q10

þ 4q11 � 14q126 � � �

2.3. q-Deformed continued fractions

We will now give another method of computing q-rationals.
It is relied on the continued fraction expansion.

Given a rational number r
s > 1, where r and s are positive

integers assumed to be coprime. It has a unique continued
fraction expansion with even number of terms

r
s
¼ a1 þ 1

a2 þ 1
. .
. þ 1

a2m

, (2–3)

with ai � 1, denoted by ½a1, :::, a2m�: Note that the choice
of even length removes the ambiguity ½a1, :::, an, 1� ¼
½a1, :::, an þ 1� and makes the expansion unique.

In order to calculate the q-deformation r
s

� �
q
, one can use

the following explicit formula. Given a regular continued
fraction ½a1, :::, a2m�, its q-deformation is given by

a1, :::, a2m½ �q :¼ a1½ �q þ
qa1

a2½ �q�1 þ q�a2

a3½ �qþ
qa3

a4½ �q�1þ
q�a4

. .
.

a2m�1½ �qþ
qa2m�1
a2m½ �q�1

(2–4)

where we use the standard notation for the q-integers ½a�q ¼
1þ qþ q2 þ � � � þ qa�1: Of course, one can get rid of nega-
tive exponents in (2–4), but the formula becomes uglier.

Figure 1. Upper part of the weighted Farey graph between 0
1 and

1
0 :
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2.4. The matrix formulas

We give another, equivalent, form to define q-rationals. It
uses 2� 2 matrices and is well adapted for com-
puter programing.

Let, as before, r
s be a rational written in the form of a

continued fraction expansion (2–3). Consider the 2� 2
matrix with polynomial coefficients that was denoted byeMþ

q a1, :::, a2mð Þ in [Morier-Genoud & Ovsienko 18]. It is
defined by the formula

eMþ
q a1, :::, a2mð Þ :¼ a1½ �q qa1

1 0

 !
q a2½ �q 1

qa2 0

 !

� � � a2m�1½ �q qa2m�1

1 0

 !
q a2m½ �q 1

qa2m 0

 !
:

(2–5)

This matrix is a q-analogue of the usual “matrix of con-
vergents” of a continued fraction (see [Borwein et al. 14,
Morier-Genoud et al. 19]).

It is easy to prove that this matrix contains the numer-
ator and denominator of r

s

� �
q
(up to multiplication by q) in

the first column:

eMþ
q a1, :::, a2mð Þ ¼ qR R0

2m�1
qS S0

2m�1

� �
, (2–6)

where
R qð Þ
S qð Þ ¼ r

s

� �
q
, and where

R0
2m�1 qð Þ

S0
2m�1 qð Þ ¼ ½a1, :::, a2m�1�q is the

previous convergent.

3. The stabilization phenomenon

In this section we first collect some basic properties that follow
from the matrix presentation. We prove Proposition 1.1 and
Theorem 1. Finally, in a remark, we discuss the stabilization
phenomenon in the case when x is rational.

3.1. Some simple properties of q-rationals

The following statements are immediate corollaries of (2–5)
and (2–6).

Let r
s � 1 be a rational number. Then r

s

� �
q
¼ R qð Þ

S qð Þ , where

R qð Þ and S qð Þ are polynomials with positive coefficients
whose highest and lowest coefficients are equal to 1. The
degrees of the polynomials R and S are as follows

deg Rð Þ ¼ a1 þ :::þ a2m � 1,
deg Sð Þ ¼ a2 þ :::þ a2m � 1:

The unimodality conjecture of [Morier-Genoud &
Ovsienko 18] states that the coefficients of R and S first
grow and then decrease monotonically.

Let us mention that the most important properties of q-
rationals are the total positivity and the combinatorial inter-
pretation of the coefficients of R and S:

3.2. Proof of Proposition 1.1

Let x � 1 be a real number, and let xn�1 and xn be two con-
secutive convergents of its continued fraction. Let

½xn�1�q ¼
Rn�1

Sn�1
and ½xn�q ¼

Rn

Sn
,

One then has tautologically

Rn

Sn
�Rn�1

Sn�1
¼ RnSn�1 � SnRn�1

SnSn�1
:

The polynomial in the numerator of the right-hand-side
is a power of q:

RnSn�1 � SnRn�1 ¼ qa1þ���þan�1: (3–1)

Indeed, to prove this, it suffices to compare the determinant of

the matrix eMþ
q a1, :::, a2mð Þ written in the forms (2–5) and (2–6).

Both polynomials, Sn and Sn�1, start with zero-order
term 1, and so is the series 1= SnSn�1ð Þ: It follows now from
(3–1), that the series ½xn�q � ½xn�1�q is of the form

½xn�q � ½xn�1�q ¼ qa1þ���þan�1 þ O qa1þ���þan
	 


:

Hence, Proposition 1.1.

3.3. Proof of Theorem 1

Let now ynð Þn�1
be an arbitrary sequence of rationals con-

verging to x. Then, for every fixed m, there exists N such
that yn 2 ½xm�1, xm� (or yn 2 ½xm, xm�1�Þ for every n � N:
Here, as above, xnð Þn�1 is the sequence of convergents of

the continued fraction of x.
By Proposition 1.1, the first a ¼ a1 þ � � � þ am � 1 terms of

the Taylor series of ½xm�1�q and ½xm�q coincide. It turns out
that the same is true for every rational between xm�1 and xm.

Lemma 3.1. For every rational r
s such that, xm�1 <

r
s < xm,

the first a ¼ a1 þ � � � þ am � 1 terms of the Taylor series of
r
s

� �
q
coincides with those of ½xm�1�q and ½xm�q:

Proof. Let ½xm�1�q ¼ Rm�1
Sm�1

and ½xm�q ¼ Rm
Sm

: Recall that xm�1

and xm are joined by an edge in the Farey graph.
Suppose first that r

s is also joint to xm�1 and xm, so that
we have a triangle

Set r
s

� �
q
¼ R

S , then, by definition of q-rationals,

R
S ¼ Rm�1 þ q‘Rm

Sm�1 þ q‘Sm

By (3–1), we have RmSm�1 � SmRm�1 ¼ qa: Therefore,

RSm�1 � SRm�1 ¼ Rm�1Sm�1 þ q‘RmSm�1 �Rm�1Sm�1

� q‘Rm�1Sm ¼ qaþ‘

RSm � SRm ¼ Rm�1Sm þ q‘RmSm �RmSm�1

� q‘RmSm ¼ �qa:

(3–2)

Using the same argument as in the proof of Proposition
1.1 we deduce the statement of the lemma in the case where
the three points form a triangle.

4 S. MORIER-GENOUD AND V. OVSIENKO



The general case of the lemma can then be proved
inductively. Indeed, every rational r

s such that, xm�1 <
r
s <

xm can be joined to xm�1 and xm by a sequence of triangles.
To see this, draw a vertical line in the Poincar�e half-plane
through r

s and collect all the triangles of the Farey tessella-
tion between xm�1 and xm crossed in their interior by
this line.

Hence, the lemma.

Theorem 1 follows from Lemma 3.1 and Proposition 1.1.

Remark 3.2. We also investigated the stabilization phenom-

enon in the case when x is rational. If x ¼ r
s and

rn
sn

� �
n�1

is a

sequence converging to x it is natural to ask whether ½x�q
defined by (1–2) is equal to the q-rational r

s

� �
q
. The answer

is surprising: when the sequence rn
sn

� �
approaches r

s from the

right the stabilized power series defined by (1–2) is equal to
the q-rational r

s

� �
q
, when the sequence approaches the

rational from the left this is no longer true. This is due to
the asymmetry of the relations (3–2).

Indeed, if rn
sn
> r

s for all n � 0, one can use the same
arguments as in the proof of Theorem 1 by replacing the
sequence of convergents xn by the sequence of right neigh-
bors nrþr00

nsþs00 , where
r00
s00 is the right parent introduced in Section

2.2. Considering Taylor expansions, the right neighbors
nrþr00
nsþs00

h i
q
have more and more first terms identical to those

of r
s

� �
q
as n grows.

If rn
sn
< r

s for all n � 0 the above arguments no longer
apply. However, with experimental computations, we
observed some stabilization phenomenons for the sequen-

ces rn
sn

h i
q
, but the stabilized power series is different from

r
s

� �
q
: For instance, testing several sequences of rational

approaching the integer 2 with smaller values we always
obtained a stabilization to the series 1þ q2 which is
not ½2�q ¼ 1þ q:

4. q-Deformations of quadratic irrationals

In this section we discuss several examples of quadratic
irrational numbers. We start from the simplest possible case
of the golden ratio and identify the coefficients of the
Taylor series as the remarkable and thoroughly studied
sequence of generalized Catalan numbers. We dwell on this
first example with more details to better explain the stabil-
ization phenomenon. We then calculate the q-deformation
of the number 1þ ffiffiffi

2
p

, which is usually called the “silver
ratio”. Finally, we consider several examples of square roots
of small positive integers and calculate the corresponding
functional equations.

4.1. The golden ratio and generalized Catalan numbers

The simplest example of an infinite continued fraction is the
expansion of the golden ratio:

u ¼ 1þ ffiffiffi
5

p

2
¼ ½1, 1, 1, 1, 1, :::�:

The convergents are ratios of consecutive Fibonacci num-
bers: un ¼ Fnþ1=Fn:

According to (2–4), the q-deformation of u is given by
the 2-periodic infinite continued fraction

½u�q ¼ 1þ q2

qþ 1

1þ q2

qþ 1
. .
.

(4–1)

Remark 4.1. Let us mention that there exists a celebrated q-
deformation of the golden ratio, called the Rogers-
Ramanujan continued fraction. It is aperiodic and has a
great number of beautiful and sophisticated properties (for a
survey, see [Berndt et al. 99]). Unlike the Rogers-Ramanujan
continued fraction, we do not know if (4–1) is a quotient of
two q-series with positive coefficients.

Consider the q-deformations of the convergents ½un�q:
We proved in [Morier-Genoud & Ovsienko 18] that the
coefficients of the polynomials of ½un�q are the numbers
appearing in the remarkable “Fibonacci lattice” (see
A123245 of OEIS [OEIS] and its mirror A079487). More
precisely, A123245 appears in the numerator and A079487
in the denominator. For instance,

½u6�q ¼
1þ 2qþ 3q2 þ 3q3 þ 3q4 þ q5

1þ 2qþ 2q2 þ 2q3 þ q4
,

½u8�q ¼
1þ 3qþ 5q2 þ 7q3 þ 7q4 þ 6q5 þ 4q6 þ q7

1þ 3qþ 4q2 þ 5q3 þ 4q4 þ 3q5 þ q6
,

½u9�q ¼
1þ 4qþ 7q2 þ 10q3 þ 11q4 þ 10q5 þ 7q6 þ 4q7 þ q8

1þ 4qþ 6q2 þ 7q3 þ 7q4 þ 5q5 þ 3q6 þ q7
:

We see that the coefficients at every fixed power of q of
the numerator and the denominator grow. To illustrate the
stabilization phenomenon, we give the corresponding Taylor
series:

½u6�q ¼ 1þ q2 � q3 þ 2q4 � 3q5 þ 3q6 � 3q7 þ 4q8 � 5q9

þ 5q10 � 5q11 þ 6q12 � � �
½u8�q ¼ 1þ q2 � q3 þ 2q4 � 4q5 þ 8q6 � 16q7 þ 30q8

� 55q9 þ 103q10 � 195q11 þ 368q12 � � �
½u9�q ¼ 1þ q2 � q3 þ 2q4 � 4q5 þ 8q6 � 17q7 þ 37q8

� 82q9 þ 184q10 � 414q11 þ 932q12 � � �

The series ½u9� approximates ½u�q correctly up to the 9th
term, while ½u6� only up to q4.

The full series (4–1) starts as follows:

½u�q ¼ 1þ q2 � q3 þ 2q4 � 4q5 þ 8q6 � 17q7 þ 37q8

� 82q9 þ 185q10 � 423q11 þ 978q12 � 2283q13

þ 5373q14 � 12735q15 þ 30372q16 � 72832q17

þ 175502q18 � 424748q19 þ 1032004q20 � � �
Note that one needs the nth convergent ½un�q to calculate

½u�q with accuracy up to qn.

EXPERIMENTAL MATHEMATICS 5



Fix the notation

½u�q ¼:
X
k�0

/kq
k:

We were able to identify the coefficients /k appearing in
this series as the so-called Generalized Catalan numbers (see
sequence A004148 of OEIS), but with alternating signs.

Proposition 4.2. One has /k ¼ �1ð Þkak�1, for k � 2, where
ak are the Generalized Catalan numbers; see A004148
of [OEIS].

Proof. Let us prove that the series ½u�q satisfies the following
functional equation:

q½u�2q � q2 þ q� 1
	 


½u�q � 1 ¼ 0, (4–2)

which is a q-analogue of u2 ¼ uþ 1: In fact, (4–2) is imme-
diate consequence of (4–1) which can also be written1

½u�q ¼ 1þ q2

qþ 1
½u�q

:

Proposition 4.2 then follows from the known result about
the generating function of the Generalized Catalan numbers.
Indeed, this generating function satisfies an equation equivalent
to (4–2). (see M. Somos’ contribution to A004148). w

Solving (4–2), one obtains

½u�q ¼
q2 þ q� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q4 þ 2q3 � q2 þ 2qþ 1
p

2q
:

Obviously, at q¼ 1 one recovers the golden ratio u:

Remark 4.3. Let us also mention that the coefficients of
½u�q satisfy, for all n � 3, the following linear recurrence

kþ 1ð Þ/k þ 2k� 1ð Þ/k�1 þ 2� kð Þ/k�2 þ 2k� 7ð Þ/k�3

þ k� 5ð Þ/k�4 ¼ 0:

In the context of the generalized Catalan numbers, this
recurrence was conjectured by R.J. Mathar in 2011, and recently
proved; see [Ekhad et al. 17] (based on [Zeilberger 13]).

4.2. The q-deformed silver ratio

The number 1þ ffiffiffi
2

p ¼ ½2, 2, 2, 2, :::� is often called the silver
ratio. It is denoted by dS, and its convergents are given by
the quotient of consecutive Pell numbers. This is probably
the next simplest example of infinite continued fraction after
the golden ratio.

Formula (2–4) implies the following q-deformation

½dS�q ¼ 1þ qþ q4

qþ q2 þ 1

1þqþ q4

qþq2þ 1
. .
.

(4–3)

The stabilization process goes twice faster than for the
golden ratio: one needs the nth convergent to calculate ½dS�q
with accuracy up to q2n: The series ½dS�q starts as follows

½dS�q ¼ 1þ qþ q4 � 2q6 þ q7 þ 4q8 � 5q9 � 7q10 þ 18q11

þ 7q12 � 55q13 þ 18q14 þ 146q15 � 155q16 � 322q17

þ 692q18 þ 476q19 � 2446q20 þ 307q21 þ 7322q22

� 6276q23 � 18277q24 þ 33061q25 þ 33376q26

� 129238q27 � 10899q28 � � �

We see that the coefficients grow much slower than those
of ½un�q: This sequence of coefficients is not in OEIS.

Proposition 4.4. The series ½dS�q satisfies the following func-
tional equation:

q½dS�2q � q3 þ 2q� 1
	 
½dS�q � 1 ¼ 0: (4–4)

Proof. Fromula (4–3) rewritten in the form

½dS�q ¼ 1þ qþ q4

qþ q2 þ 1
½dS�q

readily implies (4–4).

Equation (4–4) is a q-analogue of d2S ¼ 2dS þ 1, appear-
ance of q3 in this formula is somewhat surprising. Solving
(4–4), one obtains

½dS�q ¼
q3 þ 2q� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q6 þ 4q4 � 2q3 þ 4q2 þ 1
p

2q
:

4.3. The q-square roots of 2, 3, 5 and 7

We calculate the q-analogues of the simplest square roots.
Recall that

ffiffiffi
2

p ¼ ½1, �2�, ffiffiffi
3

p ¼ ½1, 1, 2�, ffiffiffi
5

p ¼ ½2, �4�, ffiffiffi
7

p ¼
½2, 1, 1, 1, 4�: The series start as follows

½
ffiffiffi
2

p
�q ¼ 1þ q3 � 2q5 þ q6 þ 4q7 � 5q8 � 7q9 þ 18q10

þ 7q11 � 55q12 þ 18q13 þ 146q14 � 155q15

� 322q16 þ 692q17 þ 476q18 � 2446q19 þ 307q20

þ 7322q21 � 6276q22 � 18277q23 þ 33061q24

þ 33376q25 � � �
½
ffiffiffi
3

p
�q ¼ 1þ q2 � q4 þ 2q5 � 2q6 � q7 þ 7q8 � 12q9 þ 7q10

þ 18q11 � 59q12 þ 78q13 � q14 � 228q15 þ 514q16

� 469q17 � 506q18 þ 2591q19 � 4338q20 þ 1837q21

þ 9405q22 � 27430q23 þ 33390q24 þ 10329q25 � � �
½ ffiffiffi5p �q ¼ 1þ qþ q6 � q8 � q9 � q10 þ 3q11 þ 4q12 � q13

� 6q14 � 11q15 þ 2q16 þ 25q17 þ 22q18 � 10q19

� 70q20 � 71q21 þ 67q22 þ 208q23 þ 168q24

� 222q25 � � �
½ ffiffiffi7p �q ¼ 1þ qþ q3 � q4 þ 2q5 � 3q6 þ 4q7 � 6q8 þ 8q9

� 9q10 þ 9q11 � 5q12 � 9q13 þ 40q14 � 101q15

þ 215q16 � 411q17 þ 724q18 � 1195q19 þ 1845q20

� 2623q21 þ 3324q22 � 3412q23 þ 1696q24 þ 4157q25 � � �

Note that the coefficients of ½ ffiffiffi2p �q are those of the silver
ratio, but the power of q is shifted by 1; in full accordance
with (1–3).1This observation is due to Doron Zeilberger.
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The following formulas can be proved in a similar way as
(4–2) and (4–4), The calculations are quite long but straight-
forward, so we omit the details.

Proposition 4.5. The series ½ ffiffiffi2p �q, ½
ffiffiffi
3

p �q, ½
ffiffiffi
5

p �q and ½ ffiffiffi7p �q
satisfy the following functional equations:

q2½
ffiffiffi
2

p
�2q � q3 � 1

	 
½ ffiffiffi2p
�q ¼ q2 þ 1, (4–5)

q2½ ffiffiffi3p �2q � q3 þ q2 � q� 1
	 
½ ffiffiffi3p �q ¼ q2 þ qþ 1, (4–6)

q3½ ffiffiffi5p �2q � q5 þ q3 � q2 � 1
	 
½ ffiffiffi5p �q ¼ q4 þ q3 þ q2 þ qþ 1, (4–7)

q3½ ffiffiffi7p �2q � q5 þ q4 � q� 1
	 
½ ffiffiffi7p �q ¼ q4 þ 2q3 þ q2 þ 2qþ 1:

(4–8)

We obtain, consequently, the following expressions for
the quantized square roots.

Note that ½ ffiffiffi5p �q looks quite different from the golden
ratio. This is an example of a highly non-trivial action of
homothety x ! x=2:

We wonder if some relations similar to (4–2), (4–4),
(4–5), (4–6), (4–7) and (4–8) hold for q-deformations of
arbitrary quadratic irrationals.

5. q-Deformations of e and p

In this section we write down the first terms of the q-defor-
mations of two notable examples of transcendental irrational
numbers, e and p. We calculated several hundreds of terms
to convince ourselves that the coefficients of the correspond-
ing series do not correspond to any sequence of OEIS.
However, one can make some surprising observations.

5.1. Computing ½e�q
The continued fraction expansion of the Euler constant is
given by the following famous regular pattern e ¼
½2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, :::� (see sequence A003417
in the OEIS). To calculate the first 40 terms in the series
½e�q, one needs to take the 15th convergent

e15 ¼ ½2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10� ¼ 517656=190435:

The series ½e�q starts as follows:

½e�q ¼ 1þ qþ q3 � q5 þ 2q6 � 3q7 þ 3q8 � q9 � 3q10

þ 9q11 � 17q12 þ 25q13 � 29q14 þ 23q15 þ 2q16

� 54q17 þ 134q18 � 232q19 þ 320q20 � 347q21

þ 243q22 þ 71q23 � 660q24 þ 1531q25 � 2575q26

þ 3504q27 � 3804q28 þ 2747q29 þ 488q30 � 6537q31

þ 15395q32 � 25819q33 þ 34716q34 � 36780q35

þ 24771q36 þ 9096q37 � 70197q38 þ 156811q39 � � �

We observe that the coefficients of q2þ7k, where k � 0,
turn out to be smaller than those of their neighbors. The
signs of the coefficients also obey a certain 7-periodic pat-
tern: indeed, the double plus, i.e., “þ,þ” signs, appears with
period 7. We do not know any reason for such a “7-perio-
dicity” related to Euler’s number.

5.2. The quantum p

The continued fraction expansion of p (cf. sequence
A001203 in the OEIS) starts as follows: p ¼ ½3, 7, 15,
1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, :::�: The rules
governing this sequence are unknown.

The 4th convergent p5 ¼ ½3, 7, 15, 1� ¼ 355=113 gives 24
first terms of ½p�q, and already the 5th convergent p5 ¼
½3, 7, 15, 1, 292� ¼ 103993=33102 allows us to calculate ½p�q
up to degree 317. We calculated up to ½p38�q ¼
11895062545096656711950=3786316004878788190109 that
approximates p up to 43 digits, and that gives the first 603
terms of the series ½p�q: The first 79 terms of ½p�q are:

½p�q ¼ 1þ qþ q2 þ q10 � q12 � q13 þ q15 þ q16 � q20

� 2q21 � q22 þ 2q23 þ 4q24 þ q25 � 4q27 � 4q28

� 2q29 þ q30 þ 5q31 þ 8q32 þ 3q33 � 3q34 � 10q35

� 12q36 � 5q37 þ 8q38 þ 19q39 þ 20q40 þ 2q41

� 18q42 � 32q43 � 25q44 þ 31q46 þ 51q47 þ 45q48

� 7q49 � 65q50 � 94q51 � 57q52 þ 35q53 þ 122q54

þ 140q55 þ 72q56 � 76q57 � 209q58 � 234q59 � 90q60

þ 171q61 þ 383q62 þ 363q63 þ 76q64 � 364q65

� 650q66 � 545q67 � 6q68 þ 702q69 þ 1101q70

þ 790q71 � 180q72 � 1329q73 � 1824q74 � 1113q75

þ 642q76 þ 2454q77 þ 2982q78 þ 1415q79 � � �

½ ffiffiffi2p �q ¼ q3 � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q6 þ 4q4 � 2q3 þ 4q2 þ 1

p
2q2

,

½ ffiffiffi3p �q ¼ q3 þ q2 � q� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q6 þ 2q5 þ 3q4 þ 3q2 þ 2qþ 1

p
2q2

,

½ ffiffiffi5p �q ¼ q5 þ q3 � q2 � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q10 þ 2q8 þ 2q7 þ 5q6 þ 5q4 þ 2q3 þ 2q2 þ 1

p
2q3

,

½ ffiffiffi7p �q ¼ q5 þ q4 � q� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q10 þ 2q9 þ q8 þ 4q7 þ 6q6 þ 6q4 þ 4q3 þ q2 þ 2qþ 1

p
2q3

:
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The coefficients of this series grow very slowly in contrast
with the other examples we considered so far. Asymptotic of
the ratio of two consecutive coefficients seems to be close to
1, that would imply that the radius of convergence of the
series is equal to 1. A curious observation is that, for
unknown reasons, the coefficient of q45 vanishes. One also
observes oscillation of the sequence of coefficients, and the
unimodality property of every (short) subsequence of coeffi-
cients with constant sign. We were unable to find any pat-
tern or to conjecture any functional equation for this series.

6. Translations

In this section we consider the properties of q-deformed reals
under translations of the argument. The action of the transla-
tion group Z is defined by the operator T : x ! xþ 1 and its
inverse, T�1 : x ! x� 1: We first study T which is simpler,
and then T�1 brings us to a new ground. In particular, we
extend the notion of q-deformation to negative real numbers.

6.1. Right translations

Consider first the action of T.

Proposition 6.1. If x � 1, then ½xþ 1�q ¼ q½x�q þ 1:

Proof. The statement of the proposition is obvious when x is
a q-integer. Hence by the explicit formula (2–4) the state-
ment is also clear for a rational x. The irrational case will
then follow from the stabilization phenomenon.

6.2. The coefficient “gap”

Proposition 6.2. The first order term of series ½x�q vanishes:

½x�q ¼ 1þ K2q2 þ K3q3 þ � � �
if and only if 1 � x � 2:

Proof. As in the previous proof, it suffices to prove the state-
ment for a rational x. Let r

s ¼ ½a1, a2, :::, a2m� be a rational
written in a form of a continued fraction. It is an easy com-
putation that the polynomials R ¼ 1þ r1qþ � � � and S ¼
1þ s1qþ � � � of the q-deformed rational r

s

� �
q
¼ R

S have iden-

tical first-order coefficient: r1 ¼ s1 if and only if a1 ¼ 1:
The result then follows from the formula

R
S ¼ 1þ r1qþ � � �

1þ s1qþ � � � ¼ 1þ r1qþ � � �ð Þ 1� s1qþ � � �ð Þ:

Propositions 6.1 and 6.2 together imply Theorem 2.

6.3. Left translations and q-deformed negative numbers

The heuristic definition

½x� 1�q :¼
½x�q � 1

q
,

that we adopt now, leads to a classes of q-deformed reals
that we did not consider so far. For x � 2, the action of
T�1 is a tautological inverse of Proposition 6.1. The

situation changes for 1 � x � 2 because of the “first order
gap” of Proposition 6.2.

More precisely, we obtain Laurent series of the follow-
ing type.

1. If 0 � x < 1, then the zero-order term of ½x�q vanishes:

½x�q ¼ K1qþ K2q2 þ K3q3 þ � � �

2. If �1 � x < 0, then
½x�q ¼ � 1

q þ K0 þ K1qþ K2q2 þ K3q3 þ � � �
3. More generally, applying the operator T�1 several times,

we obtain the general form (4) of ½x�q in the
case �k � x < 1� k:

Example 6.3.
a. If n is a positive integer, then ½�n�q ¼ q�nþ

q1�nþ � � � þ q�1:
b. For x ¼ 1

2 we have 1
2

� �
q
¼ q

1þq , and for x ¼ � 1
2 we have

� 1
2

� �
q
¼ � 1

q 1þqð Þ , so that

1
2

� �
q
þ � 1

2

� �
q
¼ � 1

q
þ 1:

We calculated the series corresponding to the negations of
several examples of quadratic irrationals, and observed the fol-
lowing property. Some of them satisfy the property that the sum
of the series ½x�q þ ½�x�q contains only finitely many terms.

Example 6.4.
a. For � ffiffiffi

2
p

, we have

½�
ffiffiffi
2

p
�q ¼� 1

q2
� 1þ q� q3 þ 2q5 � q6 � 4q7 þ 5q8

þ 7q9 � 18q10 � 7q11 þ 55q12 � 18q13 � � �

Starting from the third-order term, this series is the
negation of ½ ffiffiffi2p �q:

b. For � ffiffiffi
7

p
, we have

½� ffiffiffi
7

p �q ¼� 1
q3

� 1
q2

� 1þ q2 � q3 þ q4 � 2q5 þ 3q6

� 4q7 þ 6q8 � 8q9 þ 9q10 � 9q11 þ 5q12

þ 9q13 � � �

Once again, starting from the third-order term, the ser-
ies is the negation of ½ ffiffiffi7p �q:

This property is a mystery to us, since, as we can see
already for x ¼ 7

5 , it fails to be true even for rationals.
Note also, that nothing similar to Example 6.4 happens

for more sophisticated irrationals.

Example 6.5. For �p, we have the series that starts as follows

½�p�q ¼ � 1
q4

� 1
q2

� 1
q
� q3 þ q4 � q10 þ q11 � q17 þ 2q18

� 3q19 þ 3q20 � q21 � q24 þ 3q25 � 6q26 þ 6q27

� 2q28 � q31 þ 4q32 � 9q33 þ 10q34 � 6q35 þ 3q36

� q37 � q38 þ 5q39 � 13q40 � � �

and seems to have nothing in common with ½p�q:
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